000279447 001__ 279447
000279447 005__ 20250715101041.0
000279447 0247_ $$2doi$$a10.1097/RLI.0000000000001166
000279447 0247_ $$2pmid$$apmid:39961132
000279447 0247_ $$2ISSN$$a0020-9996
000279447 0247_ $$2ISSN$$a1536-0210
000279447 037__ $$aDZNE-2025-00778
000279447 041__ $$aEnglish
000279447 082__ $$a610
000279447 1001_ $$0P:(DE-2719)9001860$$aHaase, Robert$$b0
000279447 245__ $$aDeep Learning-Based Signal Amplification of T1-Weighted Single-Dose Images Improves Metastasis Detection in Brain MRI.
000279447 260__ $$aPhiladelphia, Pa.$$bLippincott Williams & Wilkins$$c2025
000279447 3367_ $$2DRIVER$$aarticle
000279447 3367_ $$2DataCite$$aOutput Types/Journal article
000279447 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752564736_3120
000279447 3367_ $$2BibTeX$$aARTICLE
000279447 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279447 3367_ $$00$$2EndNote$$aJournal Article
000279447 520__ $$aDouble-dose contrast-enhanced brain imaging improves tumor delineation and detection of occult metastases but is limited by concerns about gadolinium-based contrast agents' effects on patients and the environment. The purpose of this study was to test the benefit of a deep learning-based contrast signal amplification in true single-dose T1-weighted (T-SD) images creating artificial double-dose (A-DD) images for metastasis detection in brain magnetic resonance imaging.In this prospective, multicenter study, a deep learning-based method originally trained on noncontrast, low-dose, and T-SD brain images was applied to T-SD images of 30 participants (mean age ± SD, 58.5 ± 11.8 years; 23 women) acquired externally between November 2022 and June 2023. Four readers with different levels of experience independently reviewed T-SD and A-DD images for metastases with 4 weeks between readings. A reference reader reviewed additionally acquired true double-dose images to determine any metastases present. Performances were compared using Mid-p McNemar tests for sensitivity and Wilcoxon signed rank tests for false-positive findings.All readers found more metastases using A-DD images. The 2 experienced neuroradiologists achieved the same level of sensitivity using T-SD images (62 of 91 metastases, 68.1%). While the increase in sensitivity using A-DD images was only descriptive for 1 of them (A-DD: 65 of 91 metastases, +3.3%, P = 0.424), the second neuroradiologist benefited significantly with a sensitivity increase of 12.1% (73 of 91 metastases, P = 0.008). The 2 less experienced readers (1 resident and 1 fellow) both found significantly more metastases on A-DD images (resident, T-SD: 61.5%, A-DD: 68.1%, P = 0.039; fellow, T-SD: 58.2%, A-DD: 70.3%, P = 0.008). They were therefore able to use A-DD images to increase their sensitivity to the neuroradiologists' initial level on regular T-SD images. False-positive findings did not differ significantly between sequences. However, readers showed descriptively more false-positive findings on A-DD images. The benefit in sensitivity particularly applied to metastases ≤5 mm (5.7%-17.3% increase in sensitivity).A-DD images can improve the detectability of brain metastases without a significant loss of precision and could therefore represent a potentially valuable addition to regular single-dose brain imaging.
000279447 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000279447 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000279447 650_7 $$2Other$$aartificial double-dose
000279447 650_7 $$2Other$$abrain metastasis
000279447 650_7 $$2Other$$acontrast maximization
000279447 650_7 $$2Other$$aconvolutional neural network
000279447 650_7 $$2Other$$adeep learning
000279447 650_7 $$2Other$$agadolinium-based contrast agent
000279447 650_7 $$2Other$$amagnetic resonance imaging
000279447 650_7 $$2Other$$ametastasis detection
000279447 650_7 $$2Other$$avirtual contrast
000279447 650_7 $$2NLM Chemicals$$aContrast Media
000279447 650_2 $$2MeSH$$aHumans
000279447 650_2 $$2MeSH$$aDeep Learning
000279447 650_2 $$2MeSH$$aBrain Neoplasms: diagnostic imaging
000279447 650_2 $$2MeSH$$aBrain Neoplasms: secondary
000279447 650_2 $$2MeSH$$aFemale
000279447 650_2 $$2MeSH$$aMiddle Aged
000279447 650_2 $$2MeSH$$aMale
000279447 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods
000279447 650_2 $$2MeSH$$aProspective Studies
000279447 650_2 $$2MeSH$$aContrast Media: administration & dosage
000279447 650_2 $$2MeSH$$aSensitivity and Specificity
000279447 650_2 $$2MeSH$$aAged
000279447 650_2 $$2MeSH$$aImage Interpretation, Computer-Assisted: methods
000279447 650_2 $$2MeSH$$aImage Enhancement: methods
000279447 7001_ $$aPinetz, Thomas$$b1
000279447 7001_ $$aKobler, Erich$$b2
000279447 7001_ $$0P:(DE-2719)9003165$$aBendella, Zeynep$$b3$$udzne
000279447 7001_ $$aZülow, Stefan$$b4
000279447 7001_ $$aSchievelkamp, Arndt-Hendrik$$b5
000279447 7001_ $$aSchmeel, Frederic Carsten$$b6
000279447 7001_ $$aPanahabadi, Sarah$$b7
000279447 7001_ $$aStylianou, Anna Magdalena$$b8
000279447 7001_ $$0P:(DE-2719)9001705$$aPaech, Daniel$$b9$$udzne
000279447 7001_ $$aFoltyn-Dumitru, Martha$$b10
000279447 7001_ $$aWagner, Verena$$b11
000279447 7001_ $$aSchlamp, Kai$$b12
000279447 7001_ $$aHeussel, Gudula$$b13
000279447 7001_ $$aHoltkamp, Mathias$$b14
000279447 7001_ $$aHeussel, Claus Peter$$b15
000279447 7001_ $$aVahlensieck, Martin$$b16
000279447 7001_ $$aLuetkens, Julian A$$b17
000279447 7001_ $$aSchlemmer, Heinz-Peter$$b18
000279447 7001_ $$aHaubold, Johannes$$b19
000279447 7001_ $$0P:(DE-2719)9001861$$aRadbruch, Alexander$$b20$$udzne
000279447 7001_ $$0P:(DE-2719)9002732$$aEffland, Alexander$$b21$$udzne
000279447 7001_ $$aDeuschl, Cornelius$$b22
000279447 7001_ $$0P:(DE-2719)9001745$$aDeike-Hofmann, Katerina$$b23$$eLast author
000279447 773__ $$0PERI:(DE-600)2041543-6$$a10.1097/RLI.0000000000001166$$gVol. 60, no. 8, p. 543 - 551$$n8$$p543 - 551$$tInvestigative radiology$$v60$$x0020-9996$$y2025
000279447 909CO $$ooai:pub.dzne.de:279447$$pVDB
000279447 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9003165$$aExternal Institute$$b3$$kExtern
000279447 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9001705$$aExternal Institute$$b9$$kExtern
000279447 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001861$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b20$$kDZNE
000279447 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9002732$$aExternal Institute$$b21$$kExtern
000279447 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001745$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b23$$kDZNE
000279447 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000279447 9141_ $$y2025
000279447 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz$$d2024-12-12$$wger
000279447 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINVEST RADIOL : 2022$$d2024-12-12
000279447 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
000279447 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
000279447 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
000279447 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-12
000279447 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-12
000279447 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-12
000279447 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-12
000279447 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-12
000279447 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-12
000279447 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
000279447 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINVEST RADIOL : 2022$$d2024-12-12
000279447 9201_ $$0I:(DE-2719)5000075$$kAG Radbruch$$lClinical Neuroimaging$$x0
000279447 980__ $$ajournal
000279447 980__ $$aVDB
000279447 980__ $$aI:(DE-2719)5000075
000279447 980__ $$aUNRESTRICTED