Home > Publications Database > Deep Learning-Based Signal Amplification of T1-Weighted Single-Dose Images Improves Metastasis Detection in Brain MRI. > print |
001 | 279447 | ||
005 | 20250715101041.0 | ||
024 | 7 | _ | |a 10.1097/RLI.0000000000001166 |2 doi |
024 | 7 | _ | |a pmid:39961132 |2 pmid |
024 | 7 | _ | |a 0020-9996 |2 ISSN |
024 | 7 | _ | |a 1536-0210 |2 ISSN |
037 | _ | _ | |a DZNE-2025-00778 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Haase, Robert |0 P:(DE-2719)9001860 |b 0 |
245 | _ | _ | |a Deep Learning-Based Signal Amplification of T1-Weighted Single-Dose Images Improves Metastasis Detection in Brain MRI. |
260 | _ | _ | |a Philadelphia, Pa. |c 2025 |b Lippincott Williams & Wilkins |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1752564736_3120 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Double-dose contrast-enhanced brain imaging improves tumor delineation and detection of occult metastases but is limited by concerns about gadolinium-based contrast agents' effects on patients and the environment. The purpose of this study was to test the benefit of a deep learning-based contrast signal amplification in true single-dose T1-weighted (T-SD) images creating artificial double-dose (A-DD) images for metastasis detection in brain magnetic resonance imaging.In this prospective, multicenter study, a deep learning-based method originally trained on noncontrast, low-dose, and T-SD brain images was applied to T-SD images of 30 participants (mean age ± SD, 58.5 ± 11.8 years; 23 women) acquired externally between November 2022 and June 2023. Four readers with different levels of experience independently reviewed T-SD and A-DD images for metastases with 4 weeks between readings. A reference reader reviewed additionally acquired true double-dose images to determine any metastases present. Performances were compared using Mid-p McNemar tests for sensitivity and Wilcoxon signed rank tests for false-positive findings.All readers found more metastases using A-DD images. The 2 experienced neuroradiologists achieved the same level of sensitivity using T-SD images (62 of 91 metastases, 68.1%). While the increase in sensitivity using A-DD images was only descriptive for 1 of them (A-DD: 65 of 91 metastases, +3.3%, P = 0.424), the second neuroradiologist benefited significantly with a sensitivity increase of 12.1% (73 of 91 metastases, P = 0.008). The 2 less experienced readers (1 resident and 1 fellow) both found significantly more metastases on A-DD images (resident, T-SD: 61.5%, A-DD: 68.1%, P = 0.039; fellow, T-SD: 58.2%, A-DD: 70.3%, P = 0.008). They were therefore able to use A-DD images to increase their sensitivity to the neuroradiologists' initial level on regular T-SD images. False-positive findings did not differ significantly between sequences. However, readers showed descriptively more false-positive findings on A-DD images. The benefit in sensitivity particularly applied to metastases ≤5 mm (5.7%-17.3% increase in sensitivity).A-DD images can improve the detectability of brain metastases without a significant loss of precision and could therefore represent a potentially valuable addition to regular single-dose brain imaging. |
536 | _ | _ | |a 353 - Clinical and Health Care Research (POF4-353) |0 G:(DE-HGF)POF4-353 |c POF4-353 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a artificial double-dose |2 Other |
650 | _ | 7 | |a brain metastasis |2 Other |
650 | _ | 7 | |a contrast maximization |2 Other |
650 | _ | 7 | |a convolutional neural network |2 Other |
650 | _ | 7 | |a deep learning |2 Other |
650 | _ | 7 | |a gadolinium-based contrast agent |2 Other |
650 | _ | 7 | |a magnetic resonance imaging |2 Other |
650 | _ | 7 | |a metastasis detection |2 Other |
650 | _ | 7 | |a virtual contrast |2 Other |
650 | _ | 7 | |a Contrast Media |2 NLM Chemicals |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Deep Learning |2 MeSH |
650 | _ | 2 | |a Brain Neoplasms: diagnostic imaging |2 MeSH |
650 | _ | 2 | |a Brain Neoplasms: secondary |2 MeSH |
650 | _ | 2 | |a Female |2 MeSH |
650 | _ | 2 | |a Middle Aged |2 MeSH |
650 | _ | 2 | |a Male |2 MeSH |
650 | _ | 2 | |a Magnetic Resonance Imaging: methods |2 MeSH |
650 | _ | 2 | |a Prospective Studies |2 MeSH |
650 | _ | 2 | |a Contrast Media: administration & dosage |2 MeSH |
650 | _ | 2 | |a Sensitivity and Specificity |2 MeSH |
650 | _ | 2 | |a Aged |2 MeSH |
650 | _ | 2 | |a Image Interpretation, Computer-Assisted: methods |2 MeSH |
650 | _ | 2 | |a Image Enhancement: methods |2 MeSH |
700 | 1 | _ | |a Pinetz, Thomas |b 1 |
700 | 1 | _ | |a Kobler, Erich |b 2 |
700 | 1 | _ | |a Bendella, Zeynep |0 P:(DE-2719)9003165 |b 3 |u dzne |
700 | 1 | _ | |a Zülow, Stefan |b 4 |
700 | 1 | _ | |a Schievelkamp, Arndt-Hendrik |b 5 |
700 | 1 | _ | |a Schmeel, Frederic Carsten |b 6 |
700 | 1 | _ | |a Panahabadi, Sarah |b 7 |
700 | 1 | _ | |a Stylianou, Anna Magdalena |b 8 |
700 | 1 | _ | |a Paech, Daniel |0 P:(DE-2719)9001705 |b 9 |u dzne |
700 | 1 | _ | |a Foltyn-Dumitru, Martha |b 10 |
700 | 1 | _ | |a Wagner, Verena |b 11 |
700 | 1 | _ | |a Schlamp, Kai |b 12 |
700 | 1 | _ | |a Heussel, Gudula |b 13 |
700 | 1 | _ | |a Holtkamp, Mathias |b 14 |
700 | 1 | _ | |a Heussel, Claus Peter |b 15 |
700 | 1 | _ | |a Vahlensieck, Martin |b 16 |
700 | 1 | _ | |a Luetkens, Julian A |b 17 |
700 | 1 | _ | |a Schlemmer, Heinz-Peter |b 18 |
700 | 1 | _ | |a Haubold, Johannes |b 19 |
700 | 1 | _ | |a Radbruch, Alexander |0 P:(DE-2719)9001861 |b 20 |u dzne |
700 | 1 | _ | |a Effland, Alexander |0 P:(DE-2719)9002732 |b 21 |u dzne |
700 | 1 | _ | |a Deuschl, Cornelius |b 22 |
700 | 1 | _ | |a Deike-Hofmann, Katerina |0 P:(DE-2719)9001745 |b 23 |e Last author |
773 | _ | _ | |a 10.1097/RLI.0000000000001166 |g Vol. 60, no. 8, p. 543 - 551 |0 PERI:(DE-600)2041543-6 |n 8 |p 543 - 551 |t Investigative radiology |v 60 |y 2025 |x 0020-9996 |
909 | C | O | |o oai:pub.dzne.de:279447 |p VDB |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-2719)9003165 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-2719)9001705 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 20 |6 P:(DE-2719)9001861 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 21 |6 P:(DE-2719)9002732 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 23 |6 P:(DE-2719)9001745 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-353 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Clinical and Health Care Research |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a Allianz-Lizenz |0 StatID:(DE-HGF)0410 |2 StatID |d 2024-12-12 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INVEST RADIOL : 2022 |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2024-12-12 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-12 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b INVEST RADIOL : 2022 |d 2024-12-12 |
920 | 1 | _ | |0 I:(DE-2719)5000075 |k AG Radbruch |l Clinical Neuroimaging |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-2719)5000075 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|