001     279459
005     20250720001600.0
024 7 _ |a 10.1093/bib/bbaf309
|2 doi
024 7 _ |a pmid:40618350
|2 pmid
024 7 _ |a pmc:PMC12229094
|2 pmc
024 7 _ |a 1467-5463
|2 ISSN
024 7 _ |a 1477-4054
|2 ISSN
024 7 _ |a altmetric:179086926
|2 altmetric
037 _ _ |a DZNE-2025-00786
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Lian, Bin
|b 0
245 _ _ |a Inference of gene coexpression networks from single-cell transcriptome data based on variance decomposition analysis.
260 _ _ |a Oxford [u.a.]
|c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752571482_17353
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Gene regulation varies across different cell types and developmental stages, leading to distinct cellular roles across cellular populations. Investigating cell type-specific gene coexpression is therefore crucial for understanding gene functions and disease pathology. However, reconstructing gene coexpression networks from single-cell transcriptome data is challenging due to artifacts, noise, and data sparsity. Here, we present an efficient method for inference of gene coexpression networks via variance decomposition analysis (GCNVDA) to explore the underlying gene regulatory mechanisms from single-cell transcriptome data. Our model incorporates multiple sources of variability, including a random effect term $G$ to capture gene-level variance and a random effect term $E$ to account for residual errors. We applied GCNVDA to three real-world single-cell datasets, demonstrating that our method outperforms existing state-of-the-art algorithms in both sensitivity and specificity for identifying tissue- or state-specific gene regulations. Furthermore, GCNVDA facilitates the discovery of functional modules that play critical roles in key biological processes such as embryonic development. These findings provide new insights into cell-specific regulatory mechanisms and have the potential to significantly advance research in developmental biology and disease pathology.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a gene coexpression networks
|2 Other
650 _ 7 |a gene functional modules
|2 Other
650 _ 7 |a linear mixed model
|2 Other
650 _ 7 |a single-cell RNA sequencing
|2 Other
650 _ 2 |a Single-Cell Analysis: methods
|2 MeSH
650 _ 2 |a Gene Regulatory Networks
|2 MeSH
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Transcriptome
|2 MeSH
650 _ 2 |a Gene Expression Profiling: methods
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Computational Biology: methods
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
700 1 _ |a Zhang, Haohui
|b 1
700 1 _ |a Wang, Tao
|b 2
700 1 _ |a Wang, Yongtian
|b 3
700 1 _ |a Shang, Xuequn
|b 4
700 1 _ |a Aziz, N Ahmad
|0 P:(DE-2719)2812578
|b 5
|u dzne
700 1 _ |a Hu, Jialu
|0 P:(DE-2719)9002875
|b 6
|e Last author
|u dzne
773 _ _ |a 10.1093/bib/bbaf309
|g Vol. 26, no. 4, p. bbaf309
|0 PERI:(DE-600)2036055-1
|n 4
|p bbaf309
|t Briefings in bioinformatics
|v 26
|y 2025
|x 1467-5463
856 4 _ |u https://pub.dzne.de/record/279459/files/DZNE-2025-00786%20SUP.pdf
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/279459/files/DZNE-2025-00786.pdf
856 4 _ |x pdfa
|u https://pub.dzne.de/record/279459/files/DZNE-2025-00786%20SUP.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/279459/files/DZNE-2025-00786.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:279459
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2812578
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9002875
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-28
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
920 1 _ |0 I:(DE-2719)5000071
|k AG Aziz
|l Population & Clinical Neuroepidemiology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)5000071
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21