Home > Publications Database > Ultraslow serotonin oscillations in the hippocampus delineate substates across NREM and waking. > print |
001 | 279880 | ||
005 | 20250716101214.0 | ||
024 | 7 | _ | |a 10.7554/eLife.101105 |2 doi |
024 | 7 | _ | |a pmid:40643572 |2 pmid |
024 | 7 | _ | |a pmc:PMC12252544 |2 pmc |
037 | _ | _ | |a DZNE-2025-00847 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Cooper, Claire |0 0000-0002-1279-4800 |b 0 |
245 | _ | _ | |a Ultraslow serotonin oscillations in the hippocampus delineate substates across NREM and waking. |
260 | _ | _ | |a Cambridge |c 2025 |b eLife Sciences Publications |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1752572044_17617 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Beyond the vast array of functional roles attributed to serotonin (5-HT) in the brain, changes in 5-HT levels have been shown to accompany changes in behavioral states, including WAKE, NREM, and REM sleep. Whether 5-HT dynamics at shorter time scales can be seen to delineate substates within these larger brain states remains an open question. Here, we performed simultaneous recordings of extracellular 5-HT using a recently developed G-Protein-Coupled Receptor-Activation-Based 5-HT sensor (GRAB5-HT3.0) and local field potential in the hippocampal CA1 of mice, which revealed the presence of prominent ultraslow (<0.05 Hz) 5-HT oscillations both during NREM and WAKE states. Interestingly, the phase of these ultraslow 5-HT oscillations was found to distinguish substates both within and across larger behavioral states. Hippocampal ripples occurred preferentially on the falling phase of ultraslow 5-HT oscillations during both NREM and WAKE, with higher power ripples concentrating near the peak specifically during NREM. By contrast, hippocampal-cortical coherence was strongest, and microarousals and intracranial EMG peaks were most prevalent during the rising phase in both wake and NREM. Overall, ultraslow 5-HT oscillations delineate substates within the larger behavioral states of NREM and WAKE, thus potentially temporally segregating internal memory consolidation processes from arousal-related functions. |
536 | _ | _ | |a 351 - Brain Function (POF4-351) |0 G:(DE-HGF)POF4-351 |c POF4-351 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a behavioral state |2 Other |
650 | _ | 7 | |a hippocampus |2 Other |
650 | _ | 7 | |a mouse |2 Other |
650 | _ | 7 | |a neuroscience |2 Other |
650 | _ | 7 | |a oscillation |2 Other |
650 | _ | 7 | |a ripples |2 Other |
650 | _ | 7 | |a serotonin |2 Other |
650 | _ | 7 | |a Serotonin |0 333DO1RDJY |2 NLM Chemicals |
650 | _ | 2 | |a Animals |2 MeSH |
650 | _ | 2 | |a Serotonin: metabolism |2 MeSH |
650 | _ | 2 | |a Wakefulness: physiology |2 MeSH |
650 | _ | 2 | |a Mice |2 MeSH |
650 | _ | 2 | |a Hippocampus: physiology |2 MeSH |
650 | _ | 2 | |a Male |2 MeSH |
650 | _ | 2 | |a Mice, Inbred C57BL |2 MeSH |
650 | _ | 2 | |a CA1 Region, Hippocampal: physiology |2 MeSH |
650 | _ | 2 | |a Sleep |2 MeSH |
700 | 1 | _ | |a Parthier, Daniel |0 0000-0001-8775-024X |b 1 |
700 | 1 | _ | |a Sibille, Jeremie |0 0000-0001-6895-7405 |b 2 |
700 | 1 | _ | |a Tukker, Jan Johan |0 P:(DE-2719)2812696 |b 3 |
700 | 1 | _ | |a Tritsch, Nicolas |0 0000-0003-3181-7681 |b 4 |
700 | 1 | _ | |a Schmitz, Dietmar |0 P:(DE-2719)2810725 |b 5 |e Last author |
773 | _ | _ | |a 10.7554/eLife.101105 |g Vol. 13, p. RP101105 |0 PERI:(DE-600)2687154-3 |p RP101105 |t eLife |v 13 |y 2025 |x 2050-084X |
856 | 4 | _ | |u https://pub.dzne.de/record/279880/files/DZNE-2025-00847%20SUP.pdf |
856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/279880/files/DZNE-2025-00847.pdf |
856 | 4 | _ | |x pdfa |u https://pub.dzne.de/record/279880/files/DZNE-2025-00847%20SUP.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/279880/files/DZNE-2025-00847.pdf?subformat=pdfa |
909 | C | O | |o oai:pub.dzne.de:279880 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 3 |6 P:(DE-2719)2812696 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 5 |6 P:(DE-2719)2810725 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-351 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Brain Function |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-28 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ELIFE : 2022 |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-07-30T13:58:16Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-07-30T13:58:16Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-28 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-28 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-28 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-28 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ELIFE : 2022 |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-28 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-28 |
920 | 1 | _ | |0 I:(DE-2719)1810004 |k AG Schmitz |l Network Dysfunction |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1810004 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|