001     279880
005     20250716101214.0
024 7 _ |a 10.7554/eLife.101105
|2 doi
024 7 _ |a pmid:40643572
|2 pmid
024 7 _ |a pmc:PMC12252544
|2 pmc
037 _ _ |a DZNE-2025-00847
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Cooper, Claire
|0 0000-0002-1279-4800
|b 0
245 _ _ |a Ultraslow serotonin oscillations in the hippocampus delineate substates across NREM and waking.
260 _ _ |a Cambridge
|c 2025
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752572044_17617
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Beyond the vast array of functional roles attributed to serotonin (5-HT) in the brain, changes in 5-HT levels have been shown to accompany changes in behavioral states, including WAKE, NREM, and REM sleep. Whether 5-HT dynamics at shorter time scales can be seen to delineate substates within these larger brain states remains an open question. Here, we performed simultaneous recordings of extracellular 5-HT using a recently developed G-Protein-Coupled Receptor-Activation-Based 5-HT sensor (GRAB5-HT3.0) and local field potential in the hippocampal CA1 of mice, which revealed the presence of prominent ultraslow (<0.05 Hz) 5-HT oscillations both during NREM and WAKE states. Interestingly, the phase of these ultraslow 5-HT oscillations was found to distinguish substates both within and across larger behavioral states. Hippocampal ripples occurred preferentially on the falling phase of ultraslow 5-HT oscillations during both NREM and WAKE, with higher power ripples concentrating near the peak specifically during NREM. By contrast, hippocampal-cortical coherence was strongest, and microarousals and intracranial EMG peaks were most prevalent during the rising phase in both wake and NREM. Overall, ultraslow 5-HT oscillations delineate substates within the larger behavioral states of NREM and WAKE, thus potentially temporally segregating internal memory consolidation processes from arousal-related functions.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a behavioral state
|2 Other
650 _ 7 |a hippocampus
|2 Other
650 _ 7 |a mouse
|2 Other
650 _ 7 |a neuroscience
|2 Other
650 _ 7 |a oscillation
|2 Other
650 _ 7 |a ripples
|2 Other
650 _ 7 |a serotonin
|2 Other
650 _ 7 |a Serotonin
|0 333DO1RDJY
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Serotonin: metabolism
|2 MeSH
650 _ 2 |a Wakefulness: physiology
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Hippocampus: physiology
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a CA1 Region, Hippocampal: physiology
|2 MeSH
650 _ 2 |a Sleep
|2 MeSH
700 1 _ |a Parthier, Daniel
|0 0000-0001-8775-024X
|b 1
700 1 _ |a Sibille, Jeremie
|0 0000-0001-6895-7405
|b 2
700 1 _ |a Tukker, Jan Johan
|0 P:(DE-2719)2812696
|b 3
700 1 _ |a Tritsch, Nicolas
|0 0000-0003-3181-7681
|b 4
700 1 _ |a Schmitz, Dietmar
|0 P:(DE-2719)2810725
|b 5
|e Last author
773 _ _ |a 10.7554/eLife.101105
|g Vol. 13, p. RP101105
|0 PERI:(DE-600)2687154-3
|p RP101105
|t eLife
|v 13
|y 2025
|x 2050-084X
856 4 _ |u https://pub.dzne.de/record/279880/files/DZNE-2025-00847%20SUP.pdf
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/279880/files/DZNE-2025-00847.pdf
856 4 _ |x pdfa
|u https://pub.dzne.de/record/279880/files/DZNE-2025-00847%20SUP.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/279880/files/DZNE-2025-00847.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:279880
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2812696
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2810725
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-30T13:58:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-30T13:58:16Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
920 1 _ |0 I:(DE-2719)1810004
|k AG Schmitz
|l Network Dysfunction
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1810004
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21