000279931 001__ 279931 000279931 005__ 20250722101137.0 000279931 0247_ $$2doi$$a10.5281/ZENODO.15320204 000279931 037__ $$aDZNE-2025-00862 000279931 1001_ $$0P:(DE-2719)9001161$$aBreimann, Stephan$$b0 000279931 245__ $$aSoftware: AAanalysis, v1.0.0 000279931 260__ $$aZenodo$$c2025 000279931 3367_ $$2DCMI$$aSoftware 000279931 3367_ $$0PUB:(DE-HGF)33$$2PUB:(DE-HGF)$$aSoftware$$bsware$$msware$$s1753103701_29739 000279931 3367_ $$2BibTeX$$aMISC 000279931 3367_ $$06$$2EndNote$$aComputer Program 000279931 3367_ $$2ORCID$$aOTHER 000279931 3367_ $$2DataCite$$aSoftware 000279931 520__ $$aFirst stable release of AAanalysis (Amino Acid analysis), a Python framework for interpretable sequence-based protein prediction. This version includes the foundational algorithms used in the publication 'Charting γ-secretase substrates by explainable AI' (Breimann & Kamp et al., Nature Communications, 2025): CPP (Comparative Physicochemical Profiling), a feature engineering method that identifies the most distinctive physicochemical properties between two sets of protein sequences, and dPULearn, a deterministic positive-unlabeled (PU) learning algorithm enabling robust classification from imbalanced and small datasets. 000279931 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0 000279931 588__ $$aDataset connected to DataCite 000279931 773__ $$a10.5281/ZENODO.15320204 000279931 909CO $$ooai:pub.dzne.de:279931$$pVDB 000279931 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001161$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE 000279931 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0 000279931 9141_ $$y2025 000279931 9201_ $$0I:(DE-2719)1110000-1$$kAG Steiner$$lBiochemistry of γ-Secretase$$x0 000279931 980__ $$asware 000279931 980__ $$aVDB 000279931 980__ $$aI:(DE-2719)1110000-1 000279931 980__ $$aUNRESTRICTED