000280034 001__ 280034
000280034 005__ 20250722101137.0
000280034 0247_ $$2doi$$a10.5281/ZENODO.7071267
000280034 037__ $$aDZNE-2025-00878
000280034 041__ $$aEnglish
000280034 1001_ $$0P:(DE-2719)9001512$$aBonaguro, Lorenzo$$b0
000280034 245__ $$aSoftware: huva, v0.1.4
000280034 260__ $$aZenodo$$c2022
000280034 3367_ $$2DCMI$$aSoftware
000280034 3367_ $$0PUB:(DE-HGF)33$$2PUB:(DE-HGF)$$aSoftware$$bsware$$msware$$s1753102664_28973
000280034 3367_ $$2BibTeX$$aMISC
000280034 3367_ $$06$$2EndNote$$aComputer Program
000280034 3367_ $$2ORCID$$aOTHER
000280034 3367_ $$2DataCite$$aSoftware
000280034 520__ $$aPopulation-scale multi-layered datasets assemble extensive experimental data of different types on single healthy individuals in large cohorts, capturing genetic variation and environmental factors influencing gene expression with no clinical evidence of pathology. Variance of gene expression can be exploited to set up a conditional quasi loss- and gain-of-function “in population” experiment if expression values for the gene of interest (GOI) are available. We describe here a novel approach, called huva (human variation), that takes advantage of population-scale multi-layered data to infer gene function and relationships between phenotypes and gene expression. Within a reference dataset, huva derives two experimental groups, i.e. individuals with LOW or HIGH expression of the GOI, enabling the subsequent comparison of their transcriptional profile and functional parameters. We demonstrate that this approach robustly and efficiently identifies the phenotypic relevance of a GOI, allows the stratification of genes according to shared biological functions, and we further generalized this concept to almost 16,000 genes in the human blood transcriptome. Additionally, we describe how huva predicts the phenotype of naturally occurring activating mutations in humans. Here, huva predicts monocytes rather than lymphocytes to be the major cell type in the pathophysiology of STAT1 activating mutations, evidence which was validated in a cohort of clinically characterized patients. This repository contains the huva package (v 0.1.4) used in the original manuscript, Bonaguro et al. iScience 2022, together with the R enviroment of the analysis shown in the manuscript ( https://github.com/lorenzobonaguro/huva_reproducibility )
000280034 536__ $$0G:(DE-HGF)POF4-354$$a354 - Disease Prevention and Healthy Aging (POF4-354)$$cPOF4-354$$fPOF IV$$x0
000280034 588__ $$aDataset connected to DataCite
000280034 773__ $$a10.5281/ZENODO.7071267
000280034 7870_ $$0DZNE-2022-01665$$aBonaguro, Lorenzo et.al.$$dSt. Louis : Elsevier, 2022$$iRelatedTo$$tHuman variation in population-wide gene expression data predicts gene perturbation phenotype.
000280034 909CO $$ooai:pub.dzne.de:280034$$pVDB
000280034 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001512$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000280034 9131_ $$0G:(DE-HGF)POF4-354$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Prevention and Healthy Aging$$x0
000280034 9201_ $$0I:(DE-2719)1013038$$kAG Schultze$$lClinical Single Cell Omics (CSCO) / Systems Medicine$$x0
000280034 980__ $$asware
000280034 980__ $$aVDB
000280034 980__ $$aI:(DE-2719)1013038
000280034 980__ $$aUNRESTRICTED