001     280042
005     20250824001722.0
024 7 _ |a 10.1016/j.isci.2025.112974
|2 doi
024 7 _ |a pmid:40687831
|2 pmid
024 7 _ |a pmc:PMC12272759
|2 pmc
024 7 _ |a altmetric:179076709
|2 altmetric
037 _ _ |a DZNE-2025-00881
041 _ _ |a English
082 _ _ |a 050
100 1 _ |a Klute, Susanne
|0 P:(DE-2719)9003510
|b 0
|u dzne
245 _ _ |a Mutation T9I in Envelope confers autophagy resistance to SARS-CoV-2 Omicron.
260 _ _ |a St. Louis
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1753188723_31095
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Omicron has emerged as the most successful variant of SARS-CoV-2. In addition to mutations in Spike that mediate humoral immune escape, the Omicron-specific Envelope (E) T9I mutation has been associated with increased transmission fitness. However, the underlying mechanism remained unclear. Here, we demonstrate that the E T9I mutation confers resistance to autophagy. Rare Omicron patient isolates encoding the ancestral E T9 remain sensitive to autophagy. Conversely, introducing the E T9I mutation in recombinant 2020 SARS-CoV-2 renders it resistant to autophagy. Our data indicate that the E T9I mutation protects virions against lysosomal degradation. At the molecular level, the T9I mutation increases the localization of E at autophagic vesicles and promotes interaction with autophagy-associated proteins SNX12, STX12, TMEM87B, and ABCG2. Our results show that the E T9I mutation renders incoming virions resistant to autophagy, suggesting that evasion of this antiviral mechanism contributes to the efficient spread of Omicron.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Biological sciences
|2 Other
650 _ 7 |a Cell biology
|2 Other
650 _ 7 |a Microbiology
|2 Other
650 _ 7 |a Natural sciences
|2 Other
700 1 _ |a Nchioua, Rayhane
|b 1
700 1 _ |a Cordsmeier, Arne
|b 2
700 1 _ |a Vishwakarma, Jyoti
|b 3
700 1 _ |a Koepke, Lennart
|b 4
700 1 _ |a Alshammary, Hala
|b 5
700 1 _ |a Jung, Christoph
|b 6
700 1 _ |a Hirschenberger, Maximilian
|0 P:(DE-2719)9003503
|b 7
|u dzne
700 1 _ |a Hoenigsperger, Helene
|0 P:(DE-2719)9003500
|b 8
|u dzne
700 1 _ |a Fischer, Jana-Romana
|0 P:(DE-2719)9003519
|b 9
|u dzne
700 1 _ |a Sivarajan, Rinu
|0 P:(DE-2719)9003505
|b 10
|u dzne
700 1 _ |a Zech, Fabian
|b 11
700 1 _ |a Stenger, Steffen
|b 12
700 1 _ |a Serra-Moreno, Ruth
|b 13
700 1 _ |a Gonzalez-Reiche, Ana Silvia
|b 14
700 1 _ |a Sordillo, Emilia Mia
|b 15
700 1 _ |a van Bakel, Harm
|b 16
700 1 _ |a Simon, Viviana
|b 17
700 1 _ |a Kirchhoff, Frank
|b 18
700 1 _ |a Jacob, Timo
|b 19
700 1 _ |a Kmiec, Dorota
|b 20
700 1 _ |a Pichlmair, Andreas
|b 21
700 1 _ |a Ensser, Armin
|b 22
700 1 _ |a Sparrer, Konstantin Maria Johannes
|0 P:(DE-2719)9003481
|b 23
|e Last author
|u dzne
773 _ _ |a 10.1016/j.isci.2025.112974
|g Vol. 28, no. 7, p. 112974 -
|0 PERI:(DE-600)2927064-9
|n 7
|p 112974
|t iScience
|v 28
|y 2025
|x 2589-0042
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/280042/files/DZNE-2025-00881.pdf
856 4 _ |u https://pub.dzne.de/record/280042/files/DZNE-2025-00881%20SUP.zip
856 4 _ |u https://pub.dzne.de/record/280042/files/DZNE-2025-00881.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:280042
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-2719)9003510
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-2719)9003503
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-2719)9003500
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)9003519
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-2719)9003505
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 23
|6 P:(DE-2719)9003481
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ISCIENCE : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:51:15Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:51:15Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:51:15Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ISCIENCE : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
920 1 _ |0 I:(DE-2719)1910003
|k AG Sparrer
|l Neurovirology and Neuroinflammation
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1910003
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21