000280113 001__ 280113
000280113 005__ 20250821101552.0
000280113 0247_ $$2doi$$a10.1007/s12035-025-04909-2
000280113 0247_ $$2pmid$$apmid:40210837
000280113 0247_ $$2ISSN$$a0893-7648
000280113 0247_ $$2ISSN$$a1559-1182
000280113 037__ $$aDZNE-2025-00896
000280113 041__ $$aEnglish
000280113 082__ $$a570
000280113 1001_ $$0P:(DE-2719)9001916$$aKadam, Vaibhavi$$b0
000280113 245__ $$aMost L1CAM Is not Associated with Extracellular Vesicles in Human Biofluids and iPSC-Derived Neurons.
000280113 260__ $$aTotowa, NJ$$bHumana Press$$c2025
000280113 3367_ $$2DRIVER$$aarticle
000280113 3367_ $$2DataCite$$aOutput Types/Journal article
000280113 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1753685199_26071
000280113 3367_ $$2BibTeX$$aARTICLE
000280113 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280113 3367_ $$00$$2EndNote$$aJournal Article
000280113 520__ $$aTransmembrane L1 cell adhesion molecule (L1CAM) is widely used as a marker to enrich for neuron-derived extracellular vesicles (EVs), especially in plasma. However, this approach lacks sufficient robust validation. This study aimed to assess whether human biofluids are indeed enriched for EVs, particularly neuron-derived EVs, by L1CAM immunoaffinity, utilizing multiple sources (plasma, CSF, conditioned media from iPSC-derived neurons [iNCM]) and different methods (mass spectrometry [MS], nanoparticle tracking analysis [NTA]). Following a systematic multi-step validation approach, we confirmed isolation of generic EV populations using size-exclusion chromatography (SEC) and polymer-aided precipitation (PPT)-two most commonly applied EV isolation methods-from all sources. Neurofilament light (NfL) was detected in both CSF and blood-derived EVs, indicating their neuronal origin. However, L1CAM immunoprecipitation did not yield enrichment of L1CAM in EV fractions. Instead, it was predominantly found in its free-floating form. Additionally, MS-based proteomic analysis of CSF-derived EVs also did not show L1CAM enrichment. Our study validates EV isolation from diverse biofluid sources by several isolation approaches and confirms that some EV subpopulations in human biofluids are of neuronal origin. Thorough testing across multiple sources by different orthogonal methods, however, does not support L1CAM as a marker to reliably enrich for a specific subpopulation of EVs, particularly of neuronal origin.
000280113 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000280113 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x1
000280113 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000280113 650_7 $$2Other$$aBiomarkers
000280113 650_7 $$2Other$$aBlood
000280113 650_7 $$2Other$$aCerebrospinal fluid
000280113 650_7 $$2Other$$aExtracellular vesicles
000280113 650_7 $$2Other$$aImmunoprecipitation
000280113 650_7 $$2Other$$aIsolation methods
000280113 650_7 $$2Other$$aL1CAM
000280113 650_7 $$2Other$$aNeuron
000280113 650_7 $$2NLM Chemicals$$aNeural Cell Adhesion Molecule L1
000280113 650_7 $$2NLM Chemicals$$aL1CAM protein, human
000280113 650_2 $$2MeSH$$aHumans
000280113 650_2 $$2MeSH$$aExtracellular Vesicles: metabolism
000280113 650_2 $$2MeSH$$aNeural Cell Adhesion Molecule L1: metabolism
000280113 650_2 $$2MeSH$$aNeurons: metabolism
000280113 650_2 $$2MeSH$$aInduced Pluripotent Stem Cells: metabolism
000280113 650_2 $$2MeSH$$aInduced Pluripotent Stem Cells: cytology
000280113 650_2 $$2MeSH$$aProteomics
000280113 650_2 $$2MeSH$$aBody Fluids: metabolism
000280113 7001_ $$0P:(DE-2719)9002443$$aWacker, Madeleine$$b1$$udzne
000280113 7001_ $$0P:(DE-2719)9001560$$aOeckl, Patrick$$b2$$udzne
000280113 7001_ $$0P:(DE-2719)9002166$$aKorneck, Milena$$b3
000280113 7001_ $$0P:(DE-HGF)0$$aDannenmann, Benjamin$$b4
000280113 7001_ $$0P:(DE-HGF)0$$aSkokowa, Julia$$b5
000280113 7001_ $$0P:(DE-2719)2810998$$aHauser, Stefan$$b6$$udzne
000280113 7001_ $$0P:(DE-HGF)0$$aOtto, Markus$$b7
000280113 7001_ $$0P:(DE-2719)2811275$$aSynofzik, Matthis$$b8$$eLast author$$udzne
000280113 7001_ $$0P:(DE-2719)9000375$$aMengel, David$$b9$$eLast author$$udzne
000280113 773__ $$0PERI:(DE-600)2079384-4$$a10.1007/s12035-025-04909-2$$gVol. 62, no. 8, p. 10427 - 10442$$n8$$p10427 - 10442$$tMolecular neurobiology$$v62$$x0893-7648$$y2025
000280113 8564_ $$uhttps://pub.dzne.de/record/280113/files/DZNE-2025-00896.pdf$$yOpenAccess
000280113 8564_ $$uhttps://pub.dzne.de/record/280113/files/DZNE-2025-00896%20SUP.docx
000280113 8564_ $$uhttps://pub.dzne.de/record/280113/files/DZNE-2025-00896.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280113 909CO $$ooai:pub.dzne.de:280113$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000280113 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001916$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000280113 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002443$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000280113 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001560$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000280113 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002166$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000280113 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810998$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000280113 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811275$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000280113 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000375$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000280113 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000280113 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x1
000280113 9141_ $$y2025
000280113 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
000280113 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
000280113 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-07
000280113 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-07
000280113 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000280113 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL NEUROBIOL : 2022$$d2025-01-07
000280113 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
000280113 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2025-01-07$$wger
000280113 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
000280113 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280113 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMOL NEUROBIOL : 2022$$d2025-01-07
000280113 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
000280113 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
000280113 9201_ $$0I:(DE-2719)1210000$$kAG Gasser$$lParkinson Genetics$$x0
000280113 9201_ $$0I:(DE-2719)5000073$$kAG Öckl$$lTranslational Mass Spectrometry and Biomarker Research$$x1
000280113 9201_ $$0I:(DE-2719)1210016$$kAG Hauser$$lAdvanced cellular models of neurodegeneration$$x2
000280113 980__ $$ajournal
000280113 980__ $$aVDB
000280113 980__ $$aUNRESTRICTED
000280113 980__ $$aI:(DE-2719)1210000
000280113 980__ $$aI:(DE-2719)5000073
000280113 980__ $$aI:(DE-2719)1210016
000280113 9801_ $$aFullTexts