001     280113
005     20250821101552.0
024 7 _ |a 10.1007/s12035-025-04909-2
|2 doi
024 7 _ |a pmid:40210837
|2 pmid
024 7 _ |a 0893-7648
|2 ISSN
024 7 _ |a 1559-1182
|2 ISSN
037 _ _ |a DZNE-2025-00896
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Kadam, Vaibhavi
|0 P:(DE-2719)9001916
|b 0
245 _ _ |a Most L1CAM Is not Associated with Extracellular Vesicles in Human Biofluids and iPSC-Derived Neurons.
260 _ _ |a Totowa, NJ
|c 2025
|b Humana Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1753685199_26071
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Transmembrane L1 cell adhesion molecule (L1CAM) is widely used as a marker to enrich for neuron-derived extracellular vesicles (EVs), especially in plasma. However, this approach lacks sufficient robust validation. This study aimed to assess whether human biofluids are indeed enriched for EVs, particularly neuron-derived EVs, by L1CAM immunoaffinity, utilizing multiple sources (plasma, CSF, conditioned media from iPSC-derived neurons [iNCM]) and different methods (mass spectrometry [MS], nanoparticle tracking analysis [NTA]). Following a systematic multi-step validation approach, we confirmed isolation of generic EV populations using size-exclusion chromatography (SEC) and polymer-aided precipitation (PPT)-two most commonly applied EV isolation methods-from all sources. Neurofilament light (NfL) was detected in both CSF and blood-derived EVs, indicating their neuronal origin. However, L1CAM immunoprecipitation did not yield enrichment of L1CAM in EV fractions. Instead, it was predominantly found in its free-floating form. Additionally, MS-based proteomic analysis of CSF-derived EVs also did not show L1CAM enrichment. Our study validates EV isolation from diverse biofluid sources by several isolation approaches and confirms that some EV subpopulations in human biofluids are of neuronal origin. Thorough testing across multiple sources by different orthogonal methods, however, does not support L1CAM as a marker to reliably enrich for a specific subpopulation of EVs, particularly of neuronal origin.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Biomarkers
|2 Other
650 _ 7 |a Blood
|2 Other
650 _ 7 |a Cerebrospinal fluid
|2 Other
650 _ 7 |a Extracellular vesicles
|2 Other
650 _ 7 |a Immunoprecipitation
|2 Other
650 _ 7 |a Isolation methods
|2 Other
650 _ 7 |a L1CAM
|2 Other
650 _ 7 |a Neuron
|2 Other
650 _ 7 |a Neural Cell Adhesion Molecule L1
|2 NLM Chemicals
650 _ 7 |a L1CAM protein, human
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Extracellular Vesicles: metabolism
|2 MeSH
650 _ 2 |a Neural Cell Adhesion Molecule L1: metabolism
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: cytology
|2 MeSH
650 _ 2 |a Proteomics
|2 MeSH
650 _ 2 |a Body Fluids: metabolism
|2 MeSH
700 1 _ |a Wacker, Madeleine
|0 P:(DE-2719)9002443
|b 1
|u dzne
700 1 _ |a Oeckl, Patrick
|0 P:(DE-2719)9001560
|b 2
|u dzne
700 1 _ |a Korneck, Milena
|0 P:(DE-2719)9002166
|b 3
700 1 _ |a Dannenmann, Benjamin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Skokowa, Julia
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hauser, Stefan
|0 P:(DE-2719)2810998
|b 6
|u dzne
700 1 _ |a Otto, Markus
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Synofzik, Matthis
|0 P:(DE-2719)2811275
|b 8
|e Last author
|u dzne
700 1 _ |a Mengel, David
|0 P:(DE-2719)9000375
|b 9
|e Last author
|u dzne
773 _ _ |a 10.1007/s12035-025-04909-2
|g Vol. 62, no. 8, p. 10427 - 10442
|0 PERI:(DE-600)2079384-4
|n 8
|p 10427 - 10442
|t Molecular neurobiology
|v 62
|y 2025
|x 0893-7648
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/280113/files/DZNE-2025-00896.pdf
856 4 _ |u https://pub.dzne.de/record/280113/files/DZNE-2025-00896%20SUP.docx
856 4 _ |u https://pub.dzne.de/record/280113/files/DZNE-2025-00896.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:280113
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001916
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9002443
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9001560
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9002166
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2810998
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2811275
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)9000375
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL NEUROBIOL : 2022
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MOL NEUROBIOL : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 1 _ |0 I:(DE-2719)1210000
|k AG Gasser
|l Parkinson Genetics
|x 0
920 1 _ |0 I:(DE-2719)5000073
|k AG Öckl
|l Translational Mass Spectrometry and Biomarker Research
|x 1
920 1 _ |0 I:(DE-2719)1210016
|k AG Hauser
|l Advanced cellular models of neurodegeneration
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1210000
980 _ _ |a I:(DE-2719)5000073
980 _ _ |a I:(DE-2719)1210016
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21