000280114 001__ 280114
000280114 005__ 20250824001740.0
000280114 0247_ $$2doi$$a10.1093/geronb/gbaf098
000280114 0247_ $$2pmid$$apmid:40498586
000280114 0247_ $$2ISSN$$a1079-5014
000280114 0247_ $$2ISSN$$a1758-5368
000280114 0247_ $$2altmetric$$aaltmetric:178040677
000280114 037__ $$aDZNE-2025-00897
000280114 041__ $$aEnglish
000280114 082__ $$a570
000280114 1001_ $$0P:(DE-2719)9002576$$aEtteldorf, Rika$$b0$$eFirst author$$udzne
000280114 245__ $$aRegional Brain Volume and Cortical Thickness Mediate Age-Related Differences in Eye Movement Control.
000280114 260__ $$aOxford [u.a.]$$bOxford Univ. Press$$c2025
000280114 3367_ $$2DRIVER$$aarticle
000280114 3367_ $$2DataCite$$aOutput Types/Journal article
000280114 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1755768901_23788
000280114 3367_ $$2BibTeX$$aARTICLE
000280114 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280114 3367_ $$00$$2EndNote$$aJournal Article
000280114 520__ $$aEye movements (EMs) are considered biomarkers for age-related neurological or psychological deficits, and oculomotor control has been shown to strongly decline with age. This study aimed to understand the neural pathways of these age-related changes.The analysis was based on 5,400 participants (aged 30-95 years) from the population-based Rhineland Study. EMs were recorded using video-based infrared oculography at 1,000 Hz. Brain structure measures were obtained from T1-weighted MR images using FreeSurfer. Relations of brain structure with EM outcomes were quantified using multivariable linear regression models while adjusting for age, sex, educational level, and best-corrected visual acuity. Brain structure measures were further analyzed as potential mediators in the relation between age and EM outcomes.Larger volumes of the globus pallidus and thalamus were associated with shorter saccadic latencies. Thicker cortex in frontal and parietal brain regions was associated with fewer direction errors in the antisaccade task in female but not in male participants. Thicker cortex in the calcarine sulcus was associated with better smooth pursuit performance. Cerebellar gray and white matter volumes were associated with better performance on the antisaccade and smooth pursuit tasks. Mediation analyses suggested that age-related differences in brain structures explain up to 18% of age-related differences in oculomotor performance.Our findings extend previous studies by identifying novel brain structural correlates of EM performance and quantifying the extent to which they explain age-related differences in EM performance. Our results show that differences in brain structure partly account for age-related differences in EM performance.
000280114 536__ $$0G:(DE-HGF)POF4-354$$a354 - Disease Prevention and Healthy Aging (POF4-354)$$cPOF4-354$$fPOF IV$$x0
000280114 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000280114 650_7 $$2Other$$aBiomarkers
000280114 650_7 $$2Other$$aCognition
000280114 650_7 $$2Other$$aEpidemiology
000280114 650_7 $$2Other$$aMediation analysis
000280114 650_7 $$2Other$$aNeuroimaging
000280114 650_2 $$2MeSH$$aHumans
000280114 650_2 $$2MeSH$$aMale
000280114 650_2 $$2MeSH$$aFemale
000280114 650_2 $$2MeSH$$aAged
000280114 650_2 $$2MeSH$$aMiddle Aged
000280114 650_2 $$2MeSH$$aAged, 80 and over
000280114 650_2 $$2MeSH$$aAdult
000280114 650_2 $$2MeSH$$aAging: physiology
000280114 650_2 $$2MeSH$$aAging: pathology
000280114 650_2 $$2MeSH$$aMagnetic Resonance Imaging
000280114 650_2 $$2MeSH$$aEye Movements: physiology
000280114 650_2 $$2MeSH$$aCerebral Cortex: diagnostic imaging
000280114 650_2 $$2MeSH$$aCerebral Cortex: anatomy & histology
000280114 650_2 $$2MeSH$$aSaccades: physiology
000280114 650_2 $$2MeSH$$aBrain
000280114 650_2 $$2MeSH$$aBrain Cortical Thickness
000280114 650_2 $$2MeSH$$aGlobus Pallidus: diagnostic imaging
000280114 650_2 $$2MeSH$$aThalamus: diagnostic imaging
000280114 7001_ $$0P:(DE-2719)2812615$$aCoors, Annabell$$b1$$udzne
000280114 7001_ $$0P:(DE-2719)2812449$$aEstrada, Santiago$$b2$$udzne
000280114 7001_ $$0P:(DE-2719)2810403$$aBreteler, Monique M B$$b3$$udzne
000280114 7001_ $$0P:(DE-HGF)0$$aEttinger, Ulrich$$b4
000280114 773__ $$0PERI:(DE-600)2043945-3$$a10.1093/geronb/gbaf098$$gVol. 80, no. 7, p. gbaf098$$n7$$pgbaf098$$tThe journals of gerontology / Series B$$v80$$x1079-5014$$y2025
000280114 8564_ $$uhttps://pub.dzne.de/record/280114/files/DZNE-2025-00897%20SUP.docx
000280114 8564_ $$uhttps://pub.dzne.de/record/280114/files/DZNE-2025-00897.pdf
000280114 8564_ $$uhttps://pub.dzne.de/record/280114/files/DZNE-2025-00897.pdf?subformat=pdfa$$xpdfa
000280114 909CO $$ooai:pub.dzne.de:280114$$pVDB
000280114 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002576$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000280114 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812615$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000280114 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812449$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000280114 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810403$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000280114 9131_ $$0G:(DE-HGF)POF4-354$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Prevention and Healthy Aging$$x0
000280114 9141_ $$y2025
000280114 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-20$$wger
000280114 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000280114 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000280114 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000280114 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
000280114 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2024-12-20
000280114 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-20
000280114 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2024-12-20
000280114 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
000280114 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000280114 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GERONTOL B-PSYCHOL : 2022$$d2024-12-20
000280114 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
000280114 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
000280114 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ GERONTOL B-PSYCHOL : 2022$$d2024-12-20
000280114 9201_ $$0I:(DE-2719)1012001$$kAG Breteler$$lPopulation Health Sciences$$x0
000280114 9201_ $$0I:(DE-2719)1040310$$kAG Reuter$$lArtificial Intelligence in Medicine$$x1
000280114 980__ $$ajournal
000280114 980__ $$aVDB
000280114 980__ $$aI:(DE-2719)1012001
000280114 980__ $$aI:(DE-2719)1040310
000280114 980__ $$aUNRESTRICTED