001     280232
005     20250831001809.0
024 7 _ |a 10.1093/brain/awaf111
|2 doi
024 7 _ |a pmid:40166812
|2 pmid
024 7 _ |a pmc:PMC12316009
|2 pmc
024 7 _ |a 0006-8950
|2 ISSN
024 7 _ |a 1460-2156
|2 ISSN
024 7 _ |a altmetric:175705484
|2 altmetric
037 _ _ |a DZNE-2025-00910
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Hengel, Holger
|0 P:(DE-2719)2811940
|b 0
|e First author
245 _ _ |a Heterozygous RAB3A variants cause cerebellar ataxia by a partial loss-of-function mechanism.
260 _ _ |a Oxford
|c 2025
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756197921_31525
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a RAB3A encodes a small GTP-binding protein that is abundant in brain synaptic vesicles and crucial for the release of neurotransmitters and synaptic plasticity. Here, we identified RAB3A as a candidate gene for autosomal dominant cerebellar ataxia by two independent approaches: linkage in a large dominant ataxia family and, in parallel, an untargeted computational genetic association approach, analysing the 100 000 Genomes Project datasets. To validate the role of RAB3A in ataxia, we next screened large rare disease databases for rare heterozygous RAB3A variants in probands with ataxia features. In total, we identified 18 individuals from 10 unrelated families all sharing a cerebellar ataxia phenotype. Notably, 9 of the 10 families carried a recurrent variant in RAB3A, p.Arg83Trp, including one de novo occurrence. In addition, our screening revealed three families with a neurodevelopmental phenotype and three unique RAB3A variants, which were either de novo or loss-of-function variants. In line with the different RAB3A variant types, protein domains and predicted functional consequences, a comprehensive set of complementary methods was used to characterize the identified variants functionally. As expected, GTPase-activating protein (GAP)-dependent GTP hydrolysis was reduced for those two missense variants located in the GAP-binding domain of RAB3A (Arg83Trp and Tyr91Cys). In a Drosophila Rab3 loss-of-function model, these two missense variants also failed to rescue a synaptic phenotype. Overexpression of Rab3 variants in Drosophila wild-type background did not cause an obvious phenotype, making a dominant negative effect of these variants unlikely. Lastly, exploring interactors of RAB3A variants by using co-immunoprecipitation and mass spectrometry showed differential changes in variant-specific interactions with known RAB3A key regulatory and effector proteins. In sum, our results establish RAB3A as a neurological disease gene. It represents an autosomal dominant gene for cerebellar ataxia with different variants associated with disease, including the frequent reoccurring variant p.Arg83Trp. Our study sheds light on the variant-specific interactome of RAB3A. Finally, we suggest an association of RAB3A with a neurodevelopmental phenotype, as reported for variants in several RAB3A interaction partners and as seen in Rab3A-deficent mice, although this possible association warrants further investigation by future studies.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Bayesian statistical genetic association
|2 Other
650 _ 7 |a GTPase
|2 Other
650 _ 7 |a Rareservoir
|2 Other
650 _ 7 |a genome sequencing
|2 Other
650 _ 7 |a neurodevelopmental disorder
|2 Other
650 _ 7 |a neurogenetic disease
|2 Other
650 _ 7 |a rab3A GTP-Binding Protein
|0 EC 3.6.5.2
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a rab3A GTP-Binding Protein: genetics
|2 MeSH
650 _ 2 |a rab3A GTP-Binding Protein: metabolism
|2 MeSH
650 _ 2 |a Cerebellar Ataxia: genetics
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Pedigree
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Heterozygote
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Loss of Function Mutation: genetics
|2 MeSH
650 _ 2 |a Phenotype
|2 MeSH
700 1 _ |a Hannan, Shabab-Bin
|0 P:(DE-2719)9000570
|b 1
700 1 _ |a Reich, Selina
|0 P:(DE-2719)2813732
|b 2
700 1 _ |a Beijer, Danique
|0 P:(DE-2719)9002605
|b 3
|u dzne
700 1 _ |a Roller, Johanna Rosa
|0 P:(DE-2719)9003395
|b 4
|u dzne
700 1 _ |a Gilsbach, Bernd K
|0 P:(DE-2719)2811745
|b 5
|u dzne
700 1 _ |a Gloeckner, Christian Johannes
|0 P:(DE-2719)2811291
|b 6
|u dzne
700 1 _ |a Greene, Daniel
|b 7
700 1 _ |a Timmann, Dagmar
|b 8
700 1 _ |a Depienne, Christel
|0 0000-0002-7212-9554
|b 9
700 1 _ |a Mumford, Andrew
|b 10
700 1 _ |a O'Driscoll, Mary
|b 11
700 1 _ |a Nemeth, Andrea H
|b 12
700 1 _ |a Lundberg, Julie
|b 13
700 1 _ |a Rodan, Lance H
|b 14
700 1 _ |a Bruel, Ange-Line
|b 15
700 1 _ |a Delanne, Julian
|b 16
700 1 _ |a Deconinck, Tine
|b 17
700 1 _ |a Baets, Jonathan
|b 18
700 1 _ |a Gan-Or, Ziv
|0 0000-0003-0332-234X
|b 19
700 1 _ |a Rouleau, Guy
|0 0000-0001-8403-1418
|b 20
700 1 _ |a Suchowersky, Oksana
|b 21
700 1 _ |a Estiar, Mehrdad A
|b 22
700 1 _ |a Reich, Stephen
|b 23
700 1 _ |a Toro, Camilo
|b 24
700 1 _ |a Züchner, Stephan
|0 0000-0002-8498-5235
|b 25
700 1 _ |a Hazan, Jamilé
|b 26
700 1 _ |a Pétursson, Hjörvar
|b 27
700 1 _ |a Harmuth, Florian
|b 28
700 1 _ |a Bauer, Claudia
|b 29
700 1 _ |a Bauer, Peter
|b 30
700 1 _ |a Turro, Ernest
|b 31
700 1 _ |a Lambright, David
|b 32
700 1 _ |a Schöls, Ludger
|0 P:(DE-2719)2810795
|b 33
700 1 _ |a Synofzik, Matthis
|0 P:(DE-2719)2811275
|b 34
|e Last author
773 _ _ |a 10.1093/brain/awaf111
|g Vol. 148, no. 8, p. 2812 - 2826
|0 PERI:(DE-600)1474117-9
|n 8
|p 2812 - 2826
|t Brain
|v 148
|y 2025
|x 0006-8950
856 4 _ |u https://pub.dzne.de/record/280232/files/DZNE-2025-00910_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/280232/files/DZNE-2025-00910_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:pub.dzne.de:280232
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2811940
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9000570
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2813732
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9002605
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-2719)9003395
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2811745
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2811291
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 33
|6 P:(DE-2719)2810795
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 34
|6 P:(DE-2719)2811275
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 1
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BRAIN : 2022
|d 2024-12-12
920 1 _ |0 I:(DE-2719)1210000
|k AG Gasser
|l Parkinson Genetics
|x 0
920 1 _ |0 I:(DE-2719)5000005
|k AG Schöls
|l Clinical Neurogenetics
|x 1
920 1 _ |0 I:(DE-2719)1210007
|k AG Gloeckner
|l Functional Neuroproteomics and Translational Biomarkers in Neurodegenerative Diseases
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1210000
980 _ _ |a I:(DE-2719)5000005
980 _ _ |a I:(DE-2719)1210007
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21