001     280233
005     20250824001755.0
024 7 _ |a 10.1093/brain/awaf080
|2 doi
024 7 _ |a pmid:40235315
|2 pmid
024 7 _ |a pmc:PMC12316006
|2 pmc
024 7 _ |a 0006-8950
|2 ISSN
024 7 _ |a 1460-2156
|2 ISSN
024 7 _ |a altmetric:176155135
|2 altmetric
037 _ _ |a DZNE-2025-00911
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Meli, Norisa
|b 0
245 _ _ |a Alterations in dopaminergic innervation and receptors in focal cortical dysplasia.
260 _ _ |a Oxford
|c 2025
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1755773654_23789
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Focal cortical dysplasia (FCD) type 2 is the most common malformation of cortical development associated with pharmaco-resistant focal epilepsy and frequently located in the frontal cortex. Neuropathological hallmarks comprise abnormal cortical layering and enlarged, dysmorphic neuronal elements. Fundamentally altered local neuronal activity has been reported in human FCD type 2 epilepsy surgical biopsies. Of note, FCD type 2 emerges during brain development and forms complex connectivity architectures with surrounding neuronal networks. Local cortical microcircuits, particularly in frontal localization, are extensively modulated by monoaminergic axonal projections originating from the brainstem. Previous analysis of monoaminergic modulatory inputs in human FCD type 2 biopsies suggested altered density and distribution of these monoaminergic axons; however, a systematic investigation is still pending. Here, we perform a comprehensive analysis of dopaminergic (DA) innervation, in human FCD type 2 biopsies and in the medial prefrontal cortex (mPFC) of an FCD type 2 mouse model [mechanistic target of rapamyin (mTOR) hyperactivation model] during adolescent and adult stages. In addition, we analyse the expression of dopamine receptor transcripts via multiplex fluorescent RNA in situ hybridization in human specimens and the mPFC of this mouse model. In the mTOR hyperactivation mouse model, we observe a transient alteration of DA innervation density during adolescence and a trend towards decreased innervation in adulthood. In human FCD type 2 areas, the overall DA innervation density is decreased in adult patients compared with control areas from these patients. Moreover, the DA innervation shows an altered lamination pattern in the FCD type 2 area compared with the control area. Dopamine receptors 1 and 2 appear to be differentially expressed in the dysmorphic neurons in human samples and mTOR-mutant cells in mice compared with normally developed neurons. Intriguingly, our results suggest complex molecular and structural alterations putatively inducing impaired DA neurotransmission in FCD type 2. We hypothesize that this may have important implications for the development of these malformations and the manifestation of seizures.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a cortical malformations
|2 Other
650 _ 7 |a epileptogenesis
|2 Other
650 _ 7 |a neurodevelopmental disorders
|2 Other
650 _ 7 |a neuromodulation
|2 Other
650 _ 7 |a neurotransmitter systems
|2 Other
650 _ 7 |a Receptors, Dopamine
|2 NLM Chemicals
650 _ 7 |a TOR Serine-Threonine Kinases
|0 EC 2.7.11.1
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Malformations of Cortical Development, Group I: pathology
|2 MeSH
650 _ 2 |a Malformations of Cortical Development, Group I: metabolism
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Adolescent
|2 MeSH
650 _ 2 |a Prefrontal Cortex: metabolism
|2 MeSH
650 _ 2 |a Prefrontal Cortex: pathology
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Young Adult
|2 MeSH
650 _ 2 |a Receptors, Dopamine: metabolism
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Dopaminergic Neurons: metabolism
|2 MeSH
650 _ 2 |a Dopaminergic Neurons: pathology
|2 MeSH
650 _ 2 |a Child
|2 MeSH
650 _ 2 |a Malformations of Cortical Development: pathology
|2 MeSH
650 _ 2 |a Malformations of Cortical Development: metabolism
|2 MeSH
650 _ 2 |a TOR Serine-Threonine Kinases: metabolism
|2 MeSH
650 _ 2 |a TOR Serine-Threonine Kinases: genetics
|2 MeSH
650 _ 2 |a Focal Cortical Dysplasia
|2 MeSH
650 _ 2 |a Epilepsy
|2 MeSH
700 1 _ |a Sheran, Katherine
|0 P:(DE-2719)9001413
|b 1
|u dzne
700 1 _ |a Pitsch, Julika
|b 2
700 1 _ |a Krabbe, Sabine
|0 P:(DE-2719)9001056
|b 3
|u dzne
700 1 _ |a Borger, Valeri
|b 4
700 1 _ |a Baumgartner, Tobias
|b 5
700 1 _ |a Becker, Albert
|b 6
700 1 _ |a Blaess, Sandra
|0 0000-0002-1898-4891
|b 7
773 _ _ |a 10.1093/brain/awaf080
|g Vol. 148, no. 8, p. 2899 - 2911
|0 PERI:(DE-600)1474117-9
|n 8
|p 2899 - 2911
|t Brain
|v 148
|y 2025
|x 0006-8950
856 4 _ |u https://pub.dzne.de/record/280233/files/DZNE-2025-00911%20SUP.zip
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/280233/files/DZNE-2025-00911.pdf
856 4 _ |u https://pub.dzne.de/record/280233/files/DZNE-2025-00911.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:280233
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9001413
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9001056
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN : 2022
|d 2024-12-12
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BRAIN : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-12
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
920 1 _ |0 I:(DE-2719)5000059
|k AG Krabbe
|l Functional Diversity of Neural Circuits
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)5000059
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21