001     280257
005     20250831001836.0
024 7 _ |a 10.1098/rsob.250200
|2 doi
024 7 _ |a pmid:40735840
|2 pmid
024 7 _ |a pmc:PMC12308531
|2 pmc
024 7 _ |a altmetric:180390225
|2 altmetric
037 _ _ |a DZNE-2025-00935
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Xu, Jishu
|0 P:(DE-2719)9002275
|b 0
245 _ _ |a Long-read RNA-sequencing reveals transcript-specific regulation in human-derived cortical neurons.
260 _ _ |a London
|c 2025
|b Royal Society Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754894993_31917
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Long-read RNA sequencing has transformed transcriptome analysis by enabling comprehensive mapping of full-length transcripts, providing an unprecedented resolution of transcript diversity, alternative splicing and transcript-specific regulation. In this study, we employed nanopore long-read RNA sequencing to profile the transcriptomes of three cell types commonly used to model brain disorders, human fibroblasts, induced pluripotent stem cells and stem cell-derived cortical neurons, identifying extensive transcript diversity with 15 072 transcripts in stem cell-derived cortical neurons, 13 048 in fibroblasts and 12 759 in induced pluripotent stem cells. Our analyses uncovered 35 519 differential transcript expression events and 5135 differential transcript usage events, underscoring the complexity of transcriptomic regulation across these cell types. Importantly, by integrating differential transcript expression and usage analyses, we gained deeper insights into transcript dynamics that are not captured by gene-level expression analysis alone. Differential transcript usage analysis highlighted transcript-specific changes in disease-relevant genes such as APP, KIF2A and BSCL2, associated with Alzheimer's disease, neuronal migration disorders and degenerative axonopathies, respectively. This added resolution emphasizes the significance of transcript-level variations that often remain hidden in traditional differential gene expression analyses. Overall, our work provides a framework for understanding transcript diversity in both pluripotent and specialized cell types, which can be used to investigate transcriptomic changes in disease states in future work. Additionally, this study underscores the utility of differential transcript usage analysis in advancing our understanding of neurodevelopmental and neurodegenerative diseases, paving the way for identifying transcript-specific therapeutic targets.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a alternative splicing
|2 Other
650 _ 7 |a human-derived cortical neurons
|2 Other
650 _ 7 |a induced pluripotent stem cells
|2 Other
650 _ 7 |a long-read RNA-sequencing
|2 Other
650 _ 7 |a transcript usage
|2 Other
650 _ 7 |a transcriptomics
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Neurons: cytology
|2 MeSH
650 _ 2 |a Sequence Analysis, RNA: methods
|2 MeSH
650 _ 2 |a Transcriptome
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: cytology
|2 MeSH
650 _ 2 |a Gene Expression Profiling: methods
|2 MeSH
650 _ 2 |a Gene Expression Regulation
|2 MeSH
650 _ 2 |a Fibroblasts: metabolism
|2 MeSH
650 _ 2 |a Fibroblasts: cytology
|2 MeSH
650 _ 2 |a Cerebral Cortex: cytology
|2 MeSH
650 _ 2 |a Cerebral Cortex: metabolism
|2 MeSH
650 _ 2 |a Alternative Splicing
|2 MeSH
700 1 _ |a Hörner, Michaela
|0 0000-0001-5485-4990
|b 1
700 1 _ |a Atienza, Elena Buena
|b 2
700 1 _ |a Manibarathi, Kalaivani
|0 P:(DE-2719)9002385
|b 3
700 1 _ |a Nagel, Maike
|0 P:(DE-2719)2812101
|b 4
700 1 _ |a Hauser, Stefan
|0 P:(DE-2719)2810998
|b 5
|u dzne
700 1 _ |a Admard, Jakob
|b 6
700 1 _ |a Casadei, Nicolas
|b 7
700 1 _ |a Ossowski, Stephan
|b 8
700 1 _ |a Schuele, Rebecca
|0 P:(DE-2719)2812018
|b 9
773 _ _ |a 10.1098/rsob.250200
|g Vol. 15, no. 7, p. 250200
|0 PERI:(DE-600)2630944-0
|n 7
|p 250200
|t Open biology
|v 15
|y 2025
|x 2046-2441
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/280257/files/DZNE-2025-00935.pdf
856 4 _ |u https://pub.dzne.de/record/280257/files/DZNE-2025-00935%20SUP.docx
856 4 _ |u https://pub.dzne.de/record/280257/files/DZNE-2025-00935.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:280257
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9002385
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2812101
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2810998
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-2719)2812018
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b OPEN BIOL : 2022
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-03-15T10:46:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-03-15T10:46:58Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-03-15T10:46:58Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b OPEN BIOL : 2022
|d 2024-12-30
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-30
920 1 _ |0 I:(DE-2719)1210016
|k AG Hauser
|l Advanced cellular models of neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1210016
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21