| Home > Publications Database > Long-read RNA-sequencing reveals transcript-specific regulation in human-derived cortical neurons. > print |
| 001 | 280257 | ||
| 005 | 20250831001836.0 | ||
| 024 | 7 | _ | |a 10.1098/rsob.250200 |2 doi |
| 024 | 7 | _ | |a pmid:40735840 |2 pmid |
| 024 | 7 | _ | |a pmc:PMC12308531 |2 pmc |
| 024 | 7 | _ | |a altmetric:180390225 |2 altmetric |
| 037 | _ | _ | |a DZNE-2025-00935 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 570 |
| 100 | 1 | _ | |a Xu, Jishu |0 P:(DE-2719)9002275 |b 0 |
| 245 | _ | _ | |a Long-read RNA-sequencing reveals transcript-specific regulation in human-derived cortical neurons. |
| 260 | _ | _ | |a London |c 2025 |b Royal Society Publishing |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1754894993_31917 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Long-read RNA sequencing has transformed transcriptome analysis by enabling comprehensive mapping of full-length transcripts, providing an unprecedented resolution of transcript diversity, alternative splicing and transcript-specific regulation. In this study, we employed nanopore long-read RNA sequencing to profile the transcriptomes of three cell types commonly used to model brain disorders, human fibroblasts, induced pluripotent stem cells and stem cell-derived cortical neurons, identifying extensive transcript diversity with 15 072 transcripts in stem cell-derived cortical neurons, 13 048 in fibroblasts and 12 759 in induced pluripotent stem cells. Our analyses uncovered 35 519 differential transcript expression events and 5135 differential transcript usage events, underscoring the complexity of transcriptomic regulation across these cell types. Importantly, by integrating differential transcript expression and usage analyses, we gained deeper insights into transcript dynamics that are not captured by gene-level expression analysis alone. Differential transcript usage analysis highlighted transcript-specific changes in disease-relevant genes such as APP, KIF2A and BSCL2, associated with Alzheimer's disease, neuronal migration disorders and degenerative axonopathies, respectively. This added resolution emphasizes the significance of transcript-level variations that often remain hidden in traditional differential gene expression analyses. Overall, our work provides a framework for understanding transcript diversity in both pluripotent and specialized cell types, which can be used to investigate transcriptomic changes in disease states in future work. Additionally, this study underscores the utility of differential transcript usage analysis in advancing our understanding of neurodevelopmental and neurodegenerative diseases, paving the way for identifying transcript-specific therapeutic targets. |
| 536 | _ | _ | |a 352 - Disease Mechanisms (POF4-352) |0 G:(DE-HGF)POF4-352 |c POF4-352 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
| 650 | _ | 7 | |a alternative splicing |2 Other |
| 650 | _ | 7 | |a human-derived cortical neurons |2 Other |
| 650 | _ | 7 | |a induced pluripotent stem cells |2 Other |
| 650 | _ | 7 | |a long-read RNA-sequencing |2 Other |
| 650 | _ | 7 | |a transcript usage |2 Other |
| 650 | _ | 7 | |a transcriptomics |2 Other |
| 650 | _ | 2 | |a Humans |2 MeSH |
| 650 | _ | 2 | |a Neurons: metabolism |2 MeSH |
| 650 | _ | 2 | |a Neurons: cytology |2 MeSH |
| 650 | _ | 2 | |a Sequence Analysis, RNA: methods |2 MeSH |
| 650 | _ | 2 | |a Transcriptome |2 MeSH |
| 650 | _ | 2 | |a Induced Pluripotent Stem Cells: metabolism |2 MeSH |
| 650 | _ | 2 | |a Induced Pluripotent Stem Cells: cytology |2 MeSH |
| 650 | _ | 2 | |a Gene Expression Profiling: methods |2 MeSH |
| 650 | _ | 2 | |a Gene Expression Regulation |2 MeSH |
| 650 | _ | 2 | |a Fibroblasts: metabolism |2 MeSH |
| 650 | _ | 2 | |a Fibroblasts: cytology |2 MeSH |
| 650 | _ | 2 | |a Cerebral Cortex: cytology |2 MeSH |
| 650 | _ | 2 | |a Cerebral Cortex: metabolism |2 MeSH |
| 650 | _ | 2 | |a Alternative Splicing |2 MeSH |
| 700 | 1 | _ | |a Hörner, Michaela |0 0000-0001-5485-4990 |b 1 |
| 700 | 1 | _ | |a Atienza, Elena Buena |b 2 |
| 700 | 1 | _ | |a Manibarathi, Kalaivani |0 P:(DE-2719)9002385 |b 3 |
| 700 | 1 | _ | |a Nagel, Maike |0 P:(DE-2719)2812101 |b 4 |
| 700 | 1 | _ | |a Hauser, Stefan |0 P:(DE-2719)2810998 |b 5 |u dzne |
| 700 | 1 | _ | |a Admard, Jakob |b 6 |
| 700 | 1 | _ | |a Casadei, Nicolas |b 7 |
| 700 | 1 | _ | |a Ossowski, Stephan |b 8 |
| 700 | 1 | _ | |a Schuele, Rebecca |0 P:(DE-2719)2812018 |b 9 |
| 773 | _ | _ | |a 10.1098/rsob.250200 |g Vol. 15, no. 7, p. 250200 |0 PERI:(DE-600)2630944-0 |n 7 |p 250200 |t Open biology |v 15 |y 2025 |x 2046-2441 |
| 856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/280257/files/DZNE-2025-00935.pdf |
| 856 | 4 | _ | |u https://pub.dzne.de/record/280257/files/DZNE-2025-00935%20SUP.docx |
| 856 | 4 | _ | |u https://pub.dzne.de/record/280257/files/DZNE-2025-00935.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:pub.dzne.de:280257 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 3 |6 P:(DE-2719)9002385 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 4 |6 P:(DE-2719)2812101 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 5 |6 P:(DE-2719)2810998 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-2719)2812018 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-352 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Mechanisms |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-30 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b OPEN BIOL : 2022 |d 2024-12-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-03-15T10:46:58Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-03-15T10:46:58Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-30 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-30 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2021-03-15T10:46:58Z |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-30 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b OPEN BIOL : 2022 |d 2024-12-30 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2024-12-30 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-30 |
| 920 | 1 | _ | |0 I:(DE-2719)1210016 |k AG Hauser |l Advanced cellular models of neurodegeneration |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-2719)1210016 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|