000280426 001__ 280426
000280426 005__ 20250905102146.0
000280426 0247_ $$2doi$$a10.7554/eLife.98653
000280426 0247_ $$2pmid$$apmid:40814825
000280426 0247_ $$2pmc$$apmc:PMC12356639
000280426 037__ $$aDZNE-2025-00953
000280426 041__ $$aEnglish
000280426 082__ $$a600
000280426 1001_ $$00000-0001-9167-9263$$aSammons, Rosanna P$$b0
000280426 245__ $$aSub-type specific connectivity between CA3 pyramidal neurons may underlie their sequential activation during sharp waves.
000280426 260__ $$aCambridge$$beLife Sciences Publications$$c2025
000280426 3367_ $$2DRIVER$$aarticle
000280426 3367_ $$2DataCite$$aOutput Types/Journal article
000280426 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756975859_4382
000280426 3367_ $$2BibTeX$$aARTICLE
000280426 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280426 3367_ $$00$$2EndNote$$aJournal Article
000280426 520__ $$aThe CA3 region of the hippocampus is the major site of sharp wave initiation, and a brain region crucially involved in learning and memory. Highly recurrent connectivity within its excitatory network is thought to underlie processes involved in memory formation. Recent work has indicated that distinct subpopulations of pyramidal neurons within this region may contribute differently to network activity, including sharp waves, in CA3. Exactly how these contributions may arise is not yet known. Here, we disentangle the local connectivity between two distinct CA3 cell types in mice: thorny and athorny pyramidal cells. We find an asymmetry in the connectivity between these two populations, with athorny cells receiving strong input from both athorny and thorny cells. Conversely, the thorny cell population receives very little input from the athorny population. Computational modeling suggests that this connectivity scheme may determine the sequential activation of these cell types during large network events such as sharp waves.
000280426 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000280426 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000280426 650_7 $$2Other$$aCA3
000280426 650_7 $$2Other$$aconnectivity
000280426 650_7 $$2Other$$ahippocampus
000280426 650_7 $$2Other$$alearning
000280426 650_7 $$2Other$$amemory
000280426 650_7 $$2Other$$amouse
000280426 650_7 $$2Other$$aneuroscience
000280426 650_7 $$2Other$$apyramidal cells
000280426 650_7 $$2Other$$asharp waves
000280426 7001_ $$00009-0002-6672-0660$$aMasserini, Stefano$$b1
000280426 7001_ $$00000-0001-9735-0039$$aMoreno Velasquez, Laura$$b2
000280426 7001_ $$00000-0003-1942-5140$$aMetodieva, Verjinia D$$b3
000280426 7001_ $$00000-0003-2076-1547$$aCano, Gaspar$$b4
000280426 7001_ $$00009-0005-0259-2411$$aSannio, Andrea$$b5
000280426 7001_ $$00000-0002-9017-0251$$aOrlando, Marta$$b6
000280426 7001_ $$00000-0001-5203-0736$$aMaier, Nikolaus$$b7
000280426 7001_ $$00000-0002-5344-2983$$aKempter, Richard$$b8
000280426 7001_ $$0P:(DE-2719)2810725$$aSchmitz, Dietmar$$b9$$eLast author
000280426 773__ $$0PERI:(DE-600)2687154-3$$a10.7554/eLife.98653$$gVol. 13, p. RP98653$$pRP98653$$teLife$$v13$$x2050-084X$$y2025
000280426 8564_ $$uhttps://pub.dzne.de/record/280426/files/DZNE-2025-00953%20SUP.pdf
000280426 8564_ $$uhttps://pub.dzne.de/record/280426/files/DZNE-2025-00953%20SUP.pdf?subformat=pdfa$$xpdfa
000280426 8564_ $$uhttps://pub.dzne.de/record/280426/files/DZNE-2025-00953.pdf$$yOpenAccess
000280426 8564_ $$uhttps://pub.dzne.de/record/280426/files/DZNE-2025-00953.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280426 909CO $$ooai:pub.dzne.de:280426$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000280426 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810725$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000280426 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000280426 9141_ $$y2025
000280426 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
000280426 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28
000280426 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-28
000280426 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-28
000280426 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-28
000280426 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-28
000280426 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELIFE : 2022$$d2024-12-28
000280426 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-07-30T13:58:16Z
000280426 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-07-30T13:58:16Z
000280426 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-28
000280426 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-28
000280426 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
000280426 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280426 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-28
000280426 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-28
000280426 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELIFE : 2022$$d2024-12-28
000280426 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
000280426 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000280426 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
000280426 9201_ $$0I:(DE-2719)1810004$$kAG Schmitz$$lNetwork Dysfunction$$x0
000280426 980__ $$ajournal
000280426 980__ $$aVDB
000280426 980__ $$aUNRESTRICTED
000280426 980__ $$aI:(DE-2719)1810004
000280426 9801_ $$aFullTexts