000280738 001__ 280738
000280738 005__ 20250905102146.0
000280738 0247_ $$2doi$$a10.5281/ZENODO.15061566
000280738 0247_ $$2doi$$a10.5281/zenodo.15061566
000280738 0247_ $$2doi$$a10.5281/zenodo.15061565
000280738 037__ $$aDZNE-2025-00959
000280738 041__ $$aEnglish
000280738 1001_ $$0P:(DE-2719)9002002$$aGockel, Nala$$b0$$udzne
000280738 245__ $$aDataset: Example Datasets for Microglial Motility Analysis Using the MotilA Pipeline
000280738 260__ $$bZenodo$$c2025
000280738 3367_ $$2BibTeX$$aMISC
000280738 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1756976190_4386
000280738 3367_ $$026$$2EndNote$$aChart or Table
000280738 3367_ $$2DataCite$$aDataset
000280738 3367_ $$2ORCID$$aDATA_SET
000280738 3367_ $$2DINI$$aResearchData
000280738 520__ $$aThis dataset contains two 5D time-lapse imaging stacks of the mouse frontal cortex acquired using in vivo two-photon microscopy. The data were acquired to study microglial process motility in the context of complement C4 overexpression, a genetic risk factor for schizophrenia. These stacks are provided as example input data for the MotilA (Microglial Motility Analysis) pipeline. This dataset accompanies the manuscript by Gockel & Nieves-Rivera et al. (2025), currently under revision. This record will be updated with the final reference upon publication. Dataset details Each file is a 5D TIFF stack with axes in the order (T, C, Z, Y, X): • T: time points (imaged every 5 minutes for 40 minutes) • C: imaging channels (channel 0 = microglia [Cx3cr1-GFP], channel 1 = neurons [tdTomato]) • Z: z-slices (~60 slices at 1 µm spacing) • Y, X: spatial dimensions (~125 × 125 μm^2, ~1200 × 1200 px; pixel size: 0.0950785 μm) Animal details • Model: Cx3cr1-GFP mice (microglia), in utero electroporation with tdTomato (neurons) • Age at imaging: P15–P19 • Brain region: Frontal cortex • Condition 1: Control • Condition 2: C4 overexpression (C4HA plasmid, frontal cortex) Imaging parameters • Microscope: In vivo two-photon microscope (Zeiss 7MP multiphoton microscope) • Laser: Tunable IR laser at 980 nm (InSight X3 tunable laser from Spectra-Physics) • Time-lapse: 5 min intervals over 40 minutes • Mode: Mice were headfixed during acquisition Applications These datasets were used to evaluate: • Microglial process motility • Gained, lost, and stable microglial pixels across time • Turnover ratio (TOR) as a proxy for fine process dynamics Motila Compatibility The files are directly compatible with the MotilA pipeline, which performs sub-volume extraction, z-projection, spectral unmixing, filtering, segmentation, and motility quantification based on pixel-wise comparisons. Acknowledgments We thank the Cell and Tissue Imaging Facility at the IFM (Theano Eirinopoulou, Mythili Savariradjane), the Light Microscopy Facility at DZNE Bonn (Hans Fried, Severin Filser), and the Animal Research Facilities at DZNE Bonn and IFM. Funding This work was supported by: • DZNE (MF) • University of Latvia (BJ) • INSERM (CLM) • Sorbonne University (CLM) • Fondation de France to CLM (FDF#00112562) • ERANET Neuron grants to CLM (ANR-18-NEUR-008-02), MF (BMBF 01EW1905), and BJ (VIAA 1.1.1.5/ERANET/20/01) • DIM C-BRAINS (Conseil Régional d’Ile-de-France) – CLM’s team is a member • Fédération pour la Recherche sur le Cerveau (CLM) • European Union ERC-CoG (MicroSynCom 865618) • German Research Foundation (DFG): SFB1089 (C01, B06), SPP2395 (MF, NG, FF, FM) • DFG Excellence Cluster ImmunoSensation2 (MF) • iBehave network to MF and SP (Ministry of Culture and Science of the State of North Rhine-Westphalia)
000280738 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000280738 588__ $$aDataset connected to DataCite
000280738 650_7 $$2Other$$atwo-photon imaging
000280738 650_7 $$2Other$$amicroglia
000280738 650_7 $$2Other$$ain vivo imaging
000280738 650_7 $$2Other$$aPython analysis pipeline
000280738 650_7 $$2Other$$amouse model
000280738 650_7 $$2Other$$aneuroscience
000280738 7001_ $$aNieves-Rivera, Nayadoleni$$b1
000280738 7001_ $$aDruart, Mélanie$$b2
000280738 7001_ $$aJaako, Külli$$b3
000280738 7001_ $$0P:(DE-2719)2811225$$aFuhrmann, Falko$$b4$$udzne
000280738 7001_ $$aRožkalne, Rebeka$$b5
000280738 7001_ $$0P:(DE-2719)2812689$$aMusacchio, Fabrizio$$b6$$udzne
000280738 7001_ $$0P:(DE-2719)2810397$$aPoll, Stefanie$$b7$$udzne
000280738 7001_ $$aBaiba, Jansone$$b8
000280738 7001_ $$0P:(DE-2719)2679991$$aFuhrmann, Martin$$b9$$udzne
000280738 7001_ $$aLe Magueresse, Corentin$$b10
000280738 773__ $$a10.5281/zenodo.15061565
000280738 909CO $$ooai:pub.dzne.de:280738$$pVDB
000280738 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002002$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000280738 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811225$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000280738 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812689$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000280738 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810397$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE
000280738 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2679991$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000280738 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000280738 9141_ $$y2025
000280738 9201_ $$0I:(DE-2719)1011004$$kAG Fuhrmann$$lNeuroimmunology and Imaging$$x0
000280738 980__ $$adataset
000280738 980__ $$aVDB
000280738 980__ $$aI:(DE-2719)1011004
000280738 980__ $$aUNRESTRICTED