001     280738
005     20250905102146.0
024 7 _ |a 10.5281/ZENODO.15061566
|2 doi
024 7 _ |a 10.5281/zenodo.15061566
|2 doi
024 7 _ |a 10.5281/zenodo.15061565
|2 doi
037 _ _ |a DZNE-2025-00959
041 _ _ |a English
100 1 _ |a Gockel, Nala
|0 P:(DE-2719)9002002
|b 0
|u dzne
245 _ _ |a Dataset: Example Datasets for Microglial Motility Analysis Using the MotilA Pipeline
260 _ _ |c 2025
|b Zenodo
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Dataset
|b dataset
|m dataset
|0 PUB:(DE-HGF)32
|s 1756976190_4386
|2 PUB:(DE-HGF)
336 7 _ |a Chart or Table
|0 26
|2 EndNote
336 7 _ |a Dataset
|2 DataCite
336 7 _ |a DATA_SET
|2 ORCID
336 7 _ |a ResearchData
|2 DINI
520 _ _ |a This dataset contains two 5D time-lapse imaging stacks of the mouse frontal cortex acquired using in vivo two-photon microscopy. The data were acquired to study microglial process motility in the context of complement C4 overexpression, a genetic risk factor for schizophrenia. These stacks are provided as example input data for the MotilA (Microglial Motility Analysis) pipeline. This dataset accompanies the manuscript by Gockel & Nieves-Rivera et al. (2025), currently under revision. This record will be updated with the final reference upon publication. Dataset details Each file is a 5D TIFF stack with axes in the order (T, C, Z, Y, X): • T: time points (imaged every 5 minutes for 40 minutes) • C: imaging channels (channel 0 = microglia [Cx3cr1-GFP], channel 1 = neurons [tdTomato]) • Z: z-slices (~60 slices at 1 µm spacing) • Y, X: spatial dimensions (~125 × 125 μm^2, ~1200 × 1200 px; pixel size: 0.0950785 μm) Animal details • Model: Cx3cr1-GFP mice (microglia), in utero electroporation with tdTomato (neurons) • Age at imaging: P15–P19 • Brain region: Frontal cortex • Condition 1: Control • Condition 2: C4 overexpression (C4HA plasmid, frontal cortex) Imaging parameters • Microscope: In vivo two-photon microscope (Zeiss 7MP multiphoton microscope) • Laser: Tunable IR laser at 980 nm (InSight X3 tunable laser from Spectra-Physics) • Time-lapse: 5 min intervals over 40 minutes • Mode: Mice were headfixed during acquisition Applications These datasets were used to evaluate: • Microglial process motility • Gained, lost, and stable microglial pixels across time • Turnover ratio (TOR) as a proxy for fine process dynamics Motila Compatibility The files are directly compatible with the MotilA pipeline, which performs sub-volume extraction, z-projection, spectral unmixing, filtering, segmentation, and motility quantification based on pixel-wise comparisons. Acknowledgments We thank the Cell and Tissue Imaging Facility at the IFM (Theano Eirinopoulou, Mythili Savariradjane), the Light Microscopy Facility at DZNE Bonn (Hans Fried, Severin Filser), and the Animal Research Facilities at DZNE Bonn and IFM. Funding This work was supported by: • DZNE (MF) • University of Latvia (BJ) • INSERM (CLM) • Sorbonne University (CLM) • Fondation de France to CLM (FDF#00112562) • ERANET Neuron grants to CLM (ANR-18-NEUR-008-02), MF (BMBF 01EW1905), and BJ (VIAA 1.1.1.5/ERANET/20/01) • DIM C-BRAINS (Conseil Régional d’Ile-de-France) – CLM’s team is a member • Fédération pour la Recherche sur le Cerveau (CLM) • European Union ERC-CoG (MicroSynCom 865618) • German Research Foundation (DFG): SFB1089 (C01, B06), SPP2395 (MF, NG, FF, FM) • DFG Excellence Cluster ImmunoSensation2 (MF) • iBehave network to MF and SP (Ministry of Culture and Science of the State of North Rhine-Westphalia)
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a two-photon imaging
|2 Other
650 _ 7 |a microglia
|2 Other
650 _ 7 |a in vivo imaging
|2 Other
650 _ 7 |a Python analysis pipeline
|2 Other
650 _ 7 |a mouse model
|2 Other
650 _ 7 |a neuroscience
|2 Other
700 1 _ |a Nieves-Rivera, Nayadoleni
|b 1
700 1 _ |a Druart, Mélanie
|b 2
700 1 _ |a Jaako, Külli
|b 3
700 1 _ |a Fuhrmann, Falko
|0 P:(DE-2719)2811225
|b 4
|u dzne
700 1 _ |a Rožkalne, Rebeka
|b 5
700 1 _ |a Musacchio, Fabrizio
|0 P:(DE-2719)2812689
|b 6
|u dzne
700 1 _ |a Poll, Stefanie
|0 P:(DE-2719)2810397
|b 7
|u dzne
700 1 _ |a Baiba, Jansone
|b 8
700 1 _ |a Fuhrmann, Martin
|0 P:(DE-2719)2679991
|b 9
|u dzne
700 1 _ |a Le Magueresse, Corentin
|b 10
773 _ _ |a 10.5281/zenodo.15061565
909 C O |o oai:pub.dzne.de:280738
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9002002
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2811225
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2812689
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810397
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2679991
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2025
920 1 _ |0 I:(DE-2719)1011004
|k AG Fuhrmann
|l Neuroimmunology and Imaging
|x 0
980 _ _ |a dataset
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1011004
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21