000280741 001__ 280741
000280741 005__ 20250821101552.0
000280741 0247_ $$2doi$$a10.5281/ZENODO.6534691
000280741 0247_ $$2doi$$a10.5281/zenodo.6534691
000280741 0247_ $$2doi$$a10.5281/zenodo.6534690
000280741 037__ $$aDZNE-2025-00962
000280741 041__ $$aEnglish
000280741 1001_ $$00000-0002-7240-5926$$aKnab, Felix$$b0
000280741 245__ $$aOpen data repository, Knab et al., Prediction of stroke outcome in mice based on non-invasive MRI and behavioral testing
000280741 260__ $$bZenodo$$c2022
000280741 3367_ $$2BibTeX$$aMISC
000280741 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1755677640_25776
000280741 3367_ $$026$$2EndNote$$aChart or Table
000280741 3367_ $$2DataCite$$aDataset
000280741 3367_ $$2ORCID$$aDATA_SET
000280741 3367_ $$2DINI$$aResearchData
000280741 520__ $$aOpen data repository, Knab et al., Prediction of stroke outcome in mice based on non-invasive MRI and behavioral testing Open data repository Knab et al. Prediction of stroke outcome in mice based on non-invasvive MRI and behavioral testing Content: README.txt This information dat Contains MRI data in NIFTI format and secondary data from atlas registration. For documentation of atlas registration files see https://pubmed.ncbi.nlm.nih.gov/28829217/ Files used for the manuscript: t2.nii: t2 weighted image acquired 24 h post stroke masklesion.nii: manually delineated lesion ix_ANO.nii: Allen brain atlas in native space (i.e. matching t2.nii) Overlap of regions defined by ix_ANO.nii with masklesion.nii were used for calculating percent damage in each atlas region prediction_models Contains separated training and test data as xlsx and csv files with lesion volumes in cubic mm of the Allen brain atlas space, percent damage per atlas region and behavioral data. The training data was used as input for training prediction models in MATLAB, the results were created using the test data. The files have following sturcture: Column 1: animal ID Columns 2-537: MRI regions (column title corresponds to the region number as used in the Allen common coordinate framework) Column 538: lesion volume Column 539: initial performance (subacute deficit) = mean performance/deficit on days 2-6 Column 540: mean performance/deficit on days 2-6 = initial performance (subacute deficit) - this column equals column 539 but has different header which was used to train the residual from initial deficit Column 541: residual performance/deficit Column 542: test or training group Consecutive rows contain data for each animal specified by the animal id The repository also contains all trained models, prediction results for the test data and tables with resulting median absolute error (MedAE) and 5th, 25th, 75th and 95 absolute error quantiles for each model. The model files end with '_models.mat' and contain 50 independently trained models each. Each model version is specified by number 1-50. The result files end with '_test_results.mat' or '_test_results.xlsx', files with MedAE and quantiles end with '_test_errors.xlsx' or '_test_errors.csv. The common part of filenames specifies the used paradigm Folder 'subacute deficit prediction' contains: - initial_performance_from_lesion_volume: prediction of subacute deficit using lesion volume - initial_performance_from_segmented_mri: prediction of subacute deficit using segmented mri Folder 'long-term outcome prediction' contains: - lesion_volume: prediction of residual deficit using lesion volume - segmented_mri: prediction of residual deficit using segmented_mri - initial_performance: prediction of residual deficit using subacute deficit Folder 'mri_inc_oob_imp' contains models trained using increasing number of mri segments sorted according to the out-of-bag importance. The number of used segments is given in the file name. The models, results and errors are separated in subfolders. Files with equal file name and different extension always contain the same data
000280741 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000280741 588__ $$aDataset connected to DataCite
000280741 650_7 $$2Other$$astroke
000280741 650_7 $$2Other$$amice
000280741 650_7 $$2Other$$aoutcome prediction
000280741 650_7 $$2Other$$amotor-function
000280741 650_7 $$2Other$$astaircase
000280741 7001_ $$00000-0001-6606-6369$$aKoch, Stefan Paul$$b1
000280741 7001_ $$00000-0003-0970-1308$$aMajor, Sebastian$$b2
000280741 7001_ $$00000-0002-6781-5226$$aFarr, Tracy D.$$b3
000280741 7001_ $$00000-0002-5053-2211$$aMueller, Susanne$$b4
000280741 7001_ $$aEuskirchen, Philipp$$b5
000280741 7001_ $$aEggers, Moritz$$b6
000280741 7001_ $$aKuffner, Melanie T. C.$$b7
000280741 7001_ $$aWalter, Josefine$$b8
000280741 7001_ $$00000-0001-7459-2828$$aDreier, Jens P.$$b9
000280741 7001_ $$0P:(DE-2719)2811033$$aEndres, Matthias$$b10
000280741 7001_ $$0P:(DE-2719)2810838$$aDirnagl, Ulrich$$b11
000280741 7001_ $$00000-0002-0965-7530$$aWenger, Nikolaus$$b12
000280741 7001_ $$0P:(DE-HGF)0$$aHoffmann, Christian J.$$b13
000280741 7001_ $$00000-0001-8777-4823$$aBoehm-Sturm, Philipp$$b14
000280741 7001_ $$00000-0002-2063-2860$$aHarms, Christoph$$b15
000280741 773__ $$a10.5281/zenodo.6534691
000280741 7870_ $$0DZNE-2023-00120$$aKnab, Felix et.al.$$d2022$$iRelatedTo$$tPrediction of Stroke Outcome in Mice Based on Non-Invasive MRI and Behavioral Testing
000280741 909CO $$ooai:pub.dzne.de:280741$$pVDB
000280741 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811033$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b10$$kDZNE
000280741 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810838$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b11$$kDZNE
000280741 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000280741 9201_ $$0I:(DE-2719)1811005$$kAG Endres$$lInterdisciplinary Dementia Research$$x0
000280741 9201_ $$0I:(DE-2719)1810002$$kAG Dirnagl$$lVascular Pathology$$x1
000280741 980__ $$adataset
000280741 980__ $$aVDB
000280741 980__ $$aI:(DE-2719)1811005
000280741 980__ $$aI:(DE-2719)1810002
000280741 980__ $$aUNRESTRICTED