001     280744
005     20250907001854.0
024 7 _ |a 10.1186/s13024-025-00878-1
|2 doi
024 7 _ |a pmid:40830489
|2 pmid
024 7 _ |a altmetric:180455782
|2 altmetric
037 _ _ |a DZNE-2025-00965
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a de Weerd, Lis
|0 P:(DE-2719)9001304
|b 0
|e First author
|u dzne
245 _ _ |a Early intervention anti-Aβ immunotherapy attenuates microglial activation without inducing exhaustion at residual plaques.
260 _ _ |a London
|c 2025
|b Biomed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756976343_4386
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Anti-amyloid β-peptide (Aβ) immunotherapy was developed to reduce amyloid plaque pathology and slow cognitive decline during progression of Alzheimer's disease. Efficient amyloid clearance has been proven in clinical trials testing anti-Aβ antibodies, by their impact on cognitive endpoints correlating with the extent of amyloid removal. However, treatment is associated with adverse side effects, such as oedema and haemorrhages, which are potentially linked to the induced immune response. To improve the safety profile of these molecules, it is imperative to understand the consequences of anti-Aβ antibody treatment on immune cell function. Here, we investigated the effects of long-term chronic anti-Aβ treatment on amyloid plaque pathology and microglial response in the APP-SAA triple knock-in mouse model with an intervention paradigm early during amyloidogenesis. Long-term treatment with anti-Aβ results in a robust and dose-dependent lowering of amyloid plaque pathology, with a higher efficiency for reducing diffuse over dense-core plaque deposition. Analysis of the CSF proteome indicates a reduction of markers for neurodegeneration including Tau and α-Synuclein, as well as immune-cell-related proteins. Bulk RNA-seq revealed a dose-dependent attenuation of disease-associated microglial (DAM) and glycolytic gene expression, which is supported by a parallel decrease of glucose uptake and protein levels of Triggering Receptor Expressed on Myeloid cells 2 (Trem2) protein, a major immune receptor involved in DAM activation of microglia. In contrast, DAM activation around residual plaques remains high, regardless of treatment dose. In addition, microglia surrounding residual plaques display a dose-dependent increase in microglial clustering and a selective increase in antigen-presenting and immune signalling proteins. These findings demonstrate that chronic early intervention by an anti-amyloid immunotherapy leads to a dose-dependent decrease in plaque formation, which is associated with lower brain-wide microglial DAM activation and neurodegeneration. Microglia at residual plaques still display a combined DAM and antigen-presenting phenotype that suggests a continued treatment response.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Aducanumab
|2 Other
650 _ 7 |a Alzheimer’s disease (AD)
|2 Other
650 _ 7 |a Amyloid plaque
|2 Other
650 _ 7 |a Immunotherapy
|2 Other
650 _ 7 |a Microglia
|2 Other
650 _ 7 |a Trem2
|2 Other
650 _ 7 |a Amyloid beta-Peptides
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Microglia: metabolism
|2 MeSH
650 _ 2 |a Microglia: drug effects
|2 MeSH
650 _ 2 |a Microglia: immunology
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Plaque, Amyloid: pathology
|2 MeSH
650 _ 2 |a Plaque, Amyloid: metabolism
|2 MeSH
650 _ 2 |a Plaque, Amyloid: immunology
|2 MeSH
650 _ 2 |a Amyloid beta-Peptides: immunology
|2 MeSH
650 _ 2 |a Amyloid beta-Peptides: metabolism
|2 MeSH
650 _ 2 |a Amyloid beta-Peptides: antagonists & inhibitors
|2 MeSH
650 _ 2 |a Immunotherapy: methods
|2 MeSH
650 _ 2 |a Alzheimer Disease: pathology
|2 MeSH
650 _ 2 |a Alzheimer Disease: metabolism
|2 MeSH
650 _ 2 |a Alzheimer Disease: immunology
|2 MeSH
650 _ 2 |a Mice, Transgenic
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
700 1 _ |a Hummel, Selina
|0 P:(DE-2719)9002483
|b 1
|u dzne
700 1 _ |a Müller, Stephan A
|0 P:(DE-2719)2810938
|b 2
|u dzne
700 1 _ |a Paris, Iñaki
|b 3
700 1 _ |a Sandmann, Thomas
|b 4
700 1 _ |a Eichholtz, Marie
|b 5
700 1 _ |a Gröger, Robin
|b 6
700 1 _ |a Englert, Amelie L
|b 7
700 1 _ |a Wagner, Stephan
|b 8
700 1 _ |a Ha, Connie
|b 9
700 1 _ |a Davis, Sonnet S
|b 10
700 1 _ |a Warkins, Valerie
|b 11
700 1 _ |a Xia, Dan
|b 12
700 1 _ |a Nuscher, Brigitte
|0 P:(DE-2719)9000236
|b 13
700 1 _ |a Berghofer, Anna
|0 P:(DE-2719)2811640
|b 14
700 1 _ |a Reich, Marvin
|0 P:(DE-2719)9001629
|b 15
|u dzne
700 1 _ |a Feiten, Astrid Feentje
|0 P:(DE-2719)9002289
|b 16
|u dzne
700 1 _ |a Schlepckow, Kai
|0 P:(DE-2719)2812546
|b 17
|u dzne
700 1 _ |a Willem, Michael
|b 18
700 1 _ |a Lichtenthaler, Stefan F
|0 P:(DE-2719)2181459
|b 19
|u dzne
700 1 _ |a Lewcock, Joseph W
|b 20
700 1 _ |a Monroe, Kathryn M
|b 21
700 1 _ |a Brendel, Matthias
|0 P:(DE-2719)9001539
|b 22
|u dzne
700 1 _ |a Haass, Christian
|0 P:(DE-2719)2202037
|b 23
|e Last author
|u dzne
773 _ _ |a 10.1186/s13024-025-00878-1
|g Vol. 20, no. 1, p. 92
|0 PERI:(DE-600)2244557-2
|n 1
|p 92
|t Molecular neurodegeneration
|v 20
|y 2025
|x 1750-1326
856 4 _ |u https://pub.dzne.de/record/280744/files/DZNE-2025-00965%20SUP.zip
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/280744/files/DZNE-2025-00965.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/280744/files/DZNE-2025-00965.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:280744
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001304
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-2719)9002483
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2810938
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)2811640
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)9001629
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 16
|6 P:(DE-2719)9002289
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 17
|6 P:(DE-2719)2812546
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 19
|6 P:(DE-2719)2181459
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 22
|6 P:(DE-2719)9001539
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 23
|6 P:(DE-2719)2202037
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-01
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b MOL NEURODEGENER : 2022
|d 2025-01-01
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL NEURODEGENER : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:42:51Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:42:51Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-01
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-01
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
920 1 _ |0 I:(DE-2719)1110007
|k AG Haass
|l Molecular Neurodegeneration
|x 0
920 1 _ |0 I:(DE-2719)1110006
|k AG Lichtenthaler
|l Neuroproteomics
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1110007
980 _ _ |a I:(DE-2719)1110006
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21