001     280783
005     20250907001857.0
024 7 _ |a 10.1038/s43588-025-00832-7
|2 doi
024 7 _ |a pmid:40646319
|2 pmid
024 7 _ |a pmc:PMC12374843
|2 pmc
024 7 _ |a altmetric:165597112
|2 altmetric
037 _ _ |a DZNE-2025-00967
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Burankova, Yuliya
|0 0009-0001-4570-1068
|b 0
245 _ _ |a Privacy-preserving multicenter differential protein abundance analysis with FedProt.
260 _ _ |a London
|c 2025
|b Nature Research
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756205926_31524
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Quantitative mass spectrometry has revolutionized proteomics by enabling simultaneous quantification of thousands of proteins. Pooling patient-derived data from multiple institutions enhances statistical power but raises serious privacy concerns. Here we introduce FedProt, the first privacy-preserving tool for collaborative differential protein abundance analysis of distributed data, which utilizes federated learning and additive secret sharing. In the absence of a multicenter patient-derived dataset for evaluation, we created two: one at five centers from E. coli experiments and one at three centers from human serum. Evaluations using these datasets confirm that FedProt achieves accuracy equivalent to the DEqMS method applied to pooled data, with completely negligible absolute differences no greater than 4 × 10-12. By contrast, -log10P computed by the most accurate meta-analysis methods diverged from the centralized analysis results by up to 25-26.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Proteomics: methods
|2 MeSH
650 _ 2 |a Mass Spectrometry
|2 MeSH
650 _ 2 |a Escherichia coli: metabolism
|2 MeSH
650 _ 2 |a Privacy
|2 MeSH
650 _ 2 |a Algorithms
|2 MeSH
700 1 _ |a Abele, Miriam
|b 1
700 1 _ |a Bakhtiari, Mohammad
|0 0000-0002-4169-9669
|b 2
700 1 _ |a von Toerne, Christine
|0 0000-0002-4132-4322
|b 3
700 1 _ |a Barth, Teresa K
|b 4
700 1 _ |a Schweizer, Lisa
|0 0000-0002-1165-7804
|b 5
700 1 _ |a Giesbertz, Pieter
|0 P:(DE-2719)9001718
|b 6
|u dzne
700 1 _ |a Schmidt, Johannes R
|0 0000-0002-2026-9715
|b 7
700 1 _ |a Kalkhof, Stefan
|0 0000-0001-6121-7105
|b 8
700 1 _ |a Müller-Deile, Janina
|0 0000-0001-6081-5664
|b 9
700 1 _ |a van Veelen, Peter A
|0 0000-0002-7898-9408
|b 10
700 1 _ |a Mohammed, Yassene
|0 0000-0003-3265-3332
|b 11
700 1 _ |a Hammer, Elke
|0 0000-0002-1507-0402
|b 12
700 1 _ |a Arend, Lis
|0 0000-0001-7990-8385
|b 13
700 1 _ |a Adamowicz, Klaudia
|0 0000-0002-9418-4386
|b 14
700 1 _ |a Laske, Tanja
|0 0000-0002-7922-7595
|b 15
700 1 _ |a Hartebrodt, Anne
|b 16
700 1 _ |a Frisch, Tobias
|b 17
700 1 _ |a Meng, Chen
|b 18
700 1 _ |a Matschinske, Julian
|b 19
700 1 _ |a Späth, Julian
|b 20
700 1 _ |a Röttger, Richard
|b 21
700 1 _ |a Schwämmle, Veit
|b 22
700 1 _ |a Hauck, Stefanie M
|0 0000-0002-1630-6827
|b 23
700 1 _ |a Lichtenthaler, Stefan F
|0 P:(DE-2719)2181459
|b 24
700 1 _ |a Imhof, Axel
|0 0000-0003-2993-8249
|b 25
700 1 _ |a Mann, Matthias
|0 0000-0003-1292-4799
|b 26
700 1 _ |a Ludwig, Christina
|0 0000-0002-6131-7322
|b 27
700 1 _ |a Kuster, Bernhard
|0 0000-0002-9094-1677
|b 28
700 1 _ |a Baumbach, Jan
|0 0000-0002-0282-0462
|b 29
700 1 _ |a Zolotareva, Olga
|0 P:(DE-2719)9002089
|b 30
|u dzne
773 _ _ |a 10.1038/s43588-025-00832-7
|g Vol. 5, no. 8, p. 675 - 688
|0 PERI:(DE-600)3029424-1
|n 8
|p 675 - 688
|t Nature computational science
|v 5
|y 2025
|x 2662-8457
856 4 _ |u https://pub.dzne.de/record/280783/files/DZNE-2025-00967%20SUP%2BSRC.zip
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/280783/files/DZNE-2025-00967%20SRC.xlsx
909 C O |o oai:pub.dzne.de:280783
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9001718
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 24
|6 P:(DE-2719)2181459
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 30
|6 P:(DE-2719)9002089
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMPUT SCI : 2022
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMPUT SCI : 2022
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
920 1 _ |0 I:(DE-2719)1110006
|k AG Lichtenthaler
|l Neuroproteomics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1110006
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21