000280789 001__ 280789
000280789 005__ 20250907001913.0
000280789 0247_ $$2doi$$a10.1212/WNL.0000000000213980
000280789 0247_ $$2pmid$$apmid:40834346
000280789 0247_ $$2pmc$$apmc:PMC12367419
000280789 0247_ $$2ISSN$$a0028-3878
000280789 0247_ $$2ISSN$$a1526-632X
000280789 0247_ $$2altmetric$$aaltmetric:180496456
000280789 037__ $$aDZNE-2025-00973
000280789 041__ $$aEnglish
000280789 082__ $$a610
000280789 1001_ $$00009-0000-0602-7122$$aPetit, Emilien$$b0
000280789 245__ $$aPrevalence, Severity, and Progression of Cerebellar Cognitive-Affective Syndrome in Patients With Spinocerebellar Ataxias.
000280789 260__ $$aPhiladelphia, Pa.$$bWolters Kluwer$$c2025
000280789 3367_ $$2DRIVER$$aarticle
000280789 3367_ $$2DataCite$$aOutput Types/Journal article
000280789 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756977473_4385
000280789 3367_ $$2BibTeX$$aARTICLE
000280789 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280789 3367_ $$00$$2EndNote$$aJournal Article
000280789 520__ $$aCerebellar cognitive-affective syndrome (CCAS) results from cerebellar degeneration, but its prevalence in spinocerebellar ataxias (SCAs) remains underexplored. This study assessed CCAS prevalence, severity, and progression across different SCAs.We included polyglutamine (PolyQ) SCA expansion carriers (ATXN1/SCA1, ATXN2/SCA2, ATXN3/SCA3, and ATXN7/SCA7), patients with FGF14/SCA27B and SPG7, and controls. Cognitive function was assessed with the CCAS scale and ataxia severity with the Scale for the Assessment and Rating of Ataxia (SARA) and Composite Cerebellar Functional Severity (CCFS) score. We correlated CCAS score with ataxia severity, brain MRI, and plasma neurofilament light chain (NfL) levels. Subtest comparisons among genotypes were adjusted for age, education, and SARA score. In PolyQ SCA carriers, we explored CCAS progression.We included 371 participants: 66 with SCA1, 28 with SCA2, 158 with SCA3, 24 with SCA7, 35 with SPG7, 17 with SCA27B, and 43 controls. Those with SCA27B and SPG7 were older (69.5 ± 9.5 and 57.8 ± 10.6 years) with lower education (11.4 ± 4.2 and 12.7 ± 3.6 years) than those with PolyQ SCAs (from 40.3 ± 14.0 for SCA7 group to 45.9 ± 11.2 years in SCA3 group, p < 0.0001; education ranging from 14.4 ± 3.1 for SCA2 group to 15.4 ± 2.8 years for SCA7 group, p < 0.0001). Among ataxic patients, definite CCAS was detected in 88% of patients with SCA27B and 71% of SPG7 carriers, followed by SCA2 (67%), SCA7 (67%), SCA1 (50%), and SCA3 (41%) groups. Among preataxic PolyQ SCA carriers, CCAS was present in 11% (10/89), similar to controls (11.6%, p = 1). However, phonemic fluency showed an early impairment in preataxic SCA1 carriers (11.8 ± 4.5 vs 14.6 ± 3.8, p = 0.04). In PolyQ SCA carriers, the CCAS total raw score correlated with SARA score (r = -0.54, p < 0.0001), CCFS score (r = -0.45; p < 0.0001), and plasma NfL levels (r = -0.26, p = 0.002). CCAS scores correlated with cerebellar volume in those with SCA2 (r = 0.64, p < 0.001). Patients with SPG7 showed significantly poorer performance in executive function, short-term memory, and abstract reasoning compared with those with SCA3 and SCA7. In PolyQ SCA carriers, improvements were observed during the first 3 years after inclusion (+2.0 ± 0.7 points, p = 0.002; +2.6 ± 0.8 points, p = 0.0007; +2.7 ± 0.8, p = 0.001, respectively). By year 4, the increase was not significant (+0.73 ± 1.16 points, p = 0.52).We observed early cognitive impairment in PolyQ SCA carriers, correlating with clinical measures, NfL levels, and cerebellum volume. Improvement over 3 years likely reflects a practice effect, potentially limiting the scale's longitudinal utility.
000280789 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000280789 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000280789 650_7 $$2NLM Chemicals$$aneurofilament protein L
000280789 650_7 $$2NLM Chemicals$$aNeurofilament Proteins
000280789 650_7 $$2NLM Chemicals$$aPeptides
000280789 650_2 $$2MeSH$$aHumans
000280789 650_2 $$2MeSH$$aSpinocerebellar Ataxias: genetics
000280789 650_2 $$2MeSH$$aSpinocerebellar Ataxias: epidemiology
000280789 650_2 $$2MeSH$$aSpinocerebellar Ataxias: complications
000280789 650_2 $$2MeSH$$aSpinocerebellar Ataxias: diagnostic imaging
000280789 650_2 $$2MeSH$$aMale
000280789 650_2 $$2MeSH$$aFemale
000280789 650_2 $$2MeSH$$aMiddle Aged
000280789 650_2 $$2MeSH$$aDisease Progression
000280789 650_2 $$2MeSH$$aAdult
000280789 650_2 $$2MeSH$$aPrevalence
000280789 650_2 $$2MeSH$$aSeverity of Illness Index
000280789 650_2 $$2MeSH$$aAged
000280789 650_2 $$2MeSH$$aMagnetic Resonance Imaging
000280789 650_2 $$2MeSH$$aNeurofilament Proteins: blood
000280789 650_2 $$2MeSH$$aPeptides: genetics
000280789 650_2 $$2MeSH$$aCerebellar Diseases: epidemiology
000280789 7001_ $$00000-0002-4249-821X$$aLópez Domínguez, Daniel$$b1
000280789 7001_ $$aMarelli, Cecilia$$b2
000280789 7001_ $$00000-0002-0382-9995$$aSayah, Sabrina$$b3
000280789 7001_ $$00000-0003-0883-7879$$aPulst, Stefan M$$b4
000280789 7001_ $$0P:(DE-2719)2811327$$aFaber, Jennifer$$b5
000280789 7001_ $$00000-0002-5769-183X$$aOz, Gulin$$b6
000280789 7001_ $$00000-0002-0382-7535$$aPaulson, Henry L$$b7
000280789 7001_ $$aAshizawa, Tetsuo$$b8
000280789 7001_ $$aConsortium, READISCA$$b9$$eCollaboration Author
000280789 7001_ $$00000-0002-2866-4330$$aTezenas du Montcel, Sophie$$b10
000280789 7001_ $$0P:(DE-2719)9000429$$aDurr, Alexandra$$b11
000280789 7001_ $$00000-0002-7824-8343$$aCoarelli, Giulia$$b12
000280789 773__ $$0PERI:(DE-600)1491874-2$$a10.1212/WNL.0000000000213980$$gVol. 105, no. 5, p. e213980$$n5$$pe213980$$tNeurology$$v105$$x0028-3878$$y2025
000280789 909CO $$ooai:pub.dzne.de:280789$$pVDB
000280789 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811327$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000280789 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000280789 9141_ $$y2025
000280789 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz$$d2025-01-02$$wger
000280789 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROLOGY : 2022$$d2025-01-02
000280789 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000280789 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000280789 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000280789 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000280789 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000280789 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000280789 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
000280789 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-02
000280789 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000280789 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000280789 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROLOGY : 2022$$d2025-01-02
000280789 9201_ $$0I:(DE-2719)1011001$$kClinical Research (Bonn)$$lClinical Research Coordination$$x0
000280789 980__ $$ajournal
000280789 980__ $$aVDB
000280789 980__ $$aI:(DE-2719)1011001
000280789 980__ $$aUNRESTRICTED