000280905 001__ 280905
000280905 005__ 20250907001926.0
000280905 0247_ $$2doi$$a10.3389/fnetp.2025.1589566
000280905 0247_ $$2pmid$$apmid:40861379
000280905 0247_ $$2pmc$$apmc:PMC12371574
000280905 0247_ $$2altmetric$$aaltmetric:180142069
000280905 037__ $$aDZNE-2025-00989
000280905 041__ $$aEnglish
000280905 082__ $$a610
000280905 1001_ $$aDimulescu, Cristiana$$b0
000280905 245__ $$aOn the robustness of the emergent spatiotemporal dynamics in biophysically realistic and phenomenological whole-brain models at multiple network resolutions.
000280905 260__ $$aLausanne$$bFrontiers Media$$c2025
000280905 3367_ $$2DRIVER$$aarticle
000280905 3367_ $$2DataCite$$aOutput Types/Journal article
000280905 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756388631_10794
000280905 3367_ $$2BibTeX$$aARTICLE
000280905 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280905 3367_ $$00$$2EndNote$$aJournal Article
000280905 520__ $$aThe human brain is a complex dynamical system which displays a wide range of macroscopic and mesoscopic patterns of neural activity, whose mechanistic origin remains poorly understood. Whole-brain modelling allows us to explore candidate mechanisms causing the observed patterns. However, it is not fully established how the choice of model type and the networks' spatial resolution influence the simulation results, hence, it remains unclear, to which extent conclusions drawn from these results are limited by modelling artefacts. Here, we compare the dynamics of a biophysically realistic, linear-nonlinear cascade model of whole-brain activity with a phenomenological Wilson-Cowan model using three structural connectomes based on the Schaefer parcellation scheme with 100, 200, and 500 nodes. Both neural mass models implement the same mechanistic hypotheses, which specifically address the interaction between excitation, inhibition, and a slow adaptation current which affects the excitatory populations. We quantify the emerging dynamical states in detail and investigate how consistent results are across the different model variants. Then we apply both model types to the specific phenomenon of slow oscillations, which are a prevalent brain rhythm during deep sleep. We investigate the consistency of model predictions when exploring specific mechanistic hypotheses about the effects of both short- and long-range connections and of the antero-posterior structural connectivity gradient on key properties of these oscillations. Overall, our results demonstrate that the coarse-grained dynamics is robust to changes in both model type and network resolution. In some cases, however, model predictions do not generalize. Thus, some care must be taken when interpreting model results.
000280905 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000280905 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000280905 650_7 $$2Other$$anetwork physiology
000280905 650_7 $$2Other$$anetwork resolution
000280905 650_7 $$2Other$$aneural mass modeling
000280905 650_7 $$2Other$$aslow oscillations
000280905 650_7 $$2Other$$aspatiotemporal dynamics
000280905 650_7 $$2Other$$awhole-brain modeling
000280905 7001_ $$aStrömsdörfer, Ronja$$b1
000280905 7001_ $$0P:(DE-2719)2812683$$aFlöel, Agnes$$b2$$udzne
000280905 7001_ $$aObermayer, Klaus$$b3
000280905 773__ $$0PERI:(DE-600)3106353-6$$a10.3389/fnetp.2025.1589566$$gVol. 5, p. 1589566$$p1589566$$tFrontiers in network physiology$$v5$$x2674-0109$$y2025
000280905 8564_ $$uhttps://pub.dzne.de/record/280905/files/DZNE-2025-00989.pdf$$yOpenAccess
000280905 8564_ $$uhttps://pub.dzne.de/record/280905/files/DZNE-2025-00989.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280905 909CO $$ooai:pub.dzne.de:280905$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000280905 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812683$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000280905 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000280905 9141_ $$y2025
000280905 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000280905 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-13
000280905 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-13
000280905 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000280905 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-13
000280905 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-06T06:48:04Z
000280905 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-06T06:48:04Z
000280905 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-13
000280905 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000280905 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280905 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-01-06T06:48:04Z
000280905 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-13
000280905 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000280905 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000280905 9201_ $$0I:(DE-2719)5000081$$kAG Flöel$$lDementia Prevention – Mechanisms and Clinical Implementation$$x0
000280905 980__ $$ajournal
000280905 980__ $$aVDB
000280905 980__ $$aUNRESTRICTED
000280905 980__ $$aI:(DE-2719)5000081
000280905 9801_ $$aFullTexts