001     280907
005     20250905102149.0
024 7 _ |a 10.3390/cells14161261
|2 doi
024 7 _ |a pmid:40862740
|2 pmid
024 7 _ |a pmc:PMC12384766
|2 pmc
037 _ _ |a DZNE-2025-00991
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Efendic, Fatima
|0 0000-0002-8462-0690
|b 0
245 _ _ |a Disrupted Myelination in FAHN: Insights from a Patient-Specific hiPSC Neuron-Oligodendrocyte Model.
260 _ _ |a Basel
|c 2025
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756388855_10796
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Fatty-acid-hydroxylase-associated neurodegeneration (FAHN) is a rare neurodegenerative disorder caused by loss-of-function mutations in the FA2H gene, leading to impaired enzymatic activity and resulting in myelin sheath instability, demyelination, and axonal degeneration. In this study, we established a human in vitro model using neurons and oligodendrocytes derived from induced pluripotent stem cells (hiPSCs) of a FAHN patient. This coculture system enabled the investigation of myelination processes and myelin integrity in a disease-relevant context. Analyses using immunofluorescence and Western blot revealed impaired expression and localisation of key myelin proteins in oligodendrocytes and cocultures. FA2H-deficient cells showed reduced myelination, shortened internodes, and disrupted formation of the nodes of Ranvier. Additionally, we identified autophagy defects-a hallmark of many neurodegenerative diseases-including reduced p62 expression, elevated LC3B levels, and impaired fusion of autophagosomes with lysosomes. This study presents a robust hiPSC-based model to study FAHN, offering new insights into the molecular pathology of the disease. Our findings suggest that FA2H mutations compromise both the structural integrity of myelin and the efficiency of the autophagic machinery, highlighting potential targets for future therapeutic interventions.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a FA2H
|2 Other
650 _ 7 |a FAHN
|2 Other
650 _ 7 |a autophagy
|2 Other
650 _ 7 |a demyelination
|2 Other
650 _ 7 |a induced pluripotent stem cells
|2 Other
650 _ 7 |a myelin proteins
|2 Other
650 _ 7 |a neurons
|2 Other
650 _ 7 |a oligodendrocytes
|2 Other
650 _ 7 |a Mixed Function Oxygenases
|0 EC 1.-
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: pathology
|2 MeSH
650 _ 2 |a Myelin Sheath: metabolism
|2 MeSH
650 _ 2 |a Myelin Sheath: pathology
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Neurons: pathology
|2 MeSH
650 _ 2 |a Oligodendroglia: metabolism
|2 MeSH
650 _ 2 |a Oligodendroglia: pathology
|2 MeSH
650 _ 2 |a Autophagy
|2 MeSH
650 _ 2 |a Models, Biological
|2 MeSH
650 _ 2 |a Neurodegenerative Diseases: pathology
|2 MeSH
650 _ 2 |a Neurodegenerative Diseases: genetics
|2 MeSH
650 _ 2 |a Neurodegenerative Diseases: metabolism
|2 MeSH
650 _ 2 |a Mutation: genetics
|2 MeSH
650 _ 2 |a Mixed Function Oxygenases: genetics
|2 MeSH
650 _ 2 |a Mixed Function Oxygenases: metabolism
|2 MeSH
650 _ 2 |a Coculture Techniques
|2 MeSH
700 1 _ |a Hermann, Andreas
|0 P:(DE-2719)2811732
|b 1
700 1 _ |a Frech, Moritz J
|0 0000-0003-2421-8779
|b 2
773 _ _ |a 10.3390/cells14161261
|g Vol. 14, no. 16, p. 1261 -
|0 PERI:(DE-600)2661518-6
|n 16
|p 1261
|t Cells
|v 14
|y 2025
|x 2073-4409
856 4 _ |u https://pub.dzne.de/record/280907/files/DZNE-2025-00991.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/280907/files/DZNE-2025-00991.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:280907
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811732
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELLS-BASEL : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-08-01T15:15:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-08-01T15:15:06Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-06
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-06
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELLS-BASEL : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
920 1 _ |0 I:(DE-2719)1511100
|k AG Hermann
|l Translational Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1511100
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21