001     280927
005     20250918102642.0
020 _ _ |a 978-3-030-59715-3 (print)
020 _ _ |a 978-3-030-59716-0 (electronic)
024 7 _ |a 10.1007/978-3-030-59716-0_36
|2 doi
024 7 _ |a 0302-9743
|2 ISSN
024 7 _ |a 1611-3349
|2 ISSN
037 _ _ |a DZNE-2025-01010
100 1 _ |a Martel, Anne L.
|0 0000-0003-1375-5501
|b 0
|e Editor
111 2 _ |a Medical Imaging Computing and Computer Assisted Intervention
|g MICCAI 2020
|c Lima
|d 2020-10-04 - 2020-10-08
|w Peru
245 _ _ |a AutoSNAP: Automatically Learning Neural Architectures for Instrument Pose Estimation
260 _ _ |a Cham
|c 2020
|b Springer International Publishing
295 1 0 |a Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 / Martel, Anne L. (Editor) [https://orcid.org/0000-0003-1375-5501] ; Cham : Springer International Publishing, 2020, Chapter 36 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-030-59715-3=978-3-030-59716-0 ; doi:10.1007/978-3-030-59716-0
300 _ _ |a 375 - 384
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1758102367_31851
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Lecture Notes in Computer Science
|v 12263
520 _ _ |a Despite recent successes, the advances in Deep Learning have not yet been fully translated to Computer Assisted Intervention (CAI) problems such as pose estimation of surgical instruments. Currently, neural architectures for classification and segmentation tasks are adopted ignoring significant discrepancies between CAI and these tasks. We propose an automatic framework (AutoSNAP) for instrument pose estimation problems, which discovers and learns architectures for neural networks. We introduce 1) an efficient testing environment for pose estimation, 2) a powerful architecture representation based on novel Symbolic Neural Architecture Patterns (SNAPs), and 3) an optimization of the architecture using an efficient search scheme. Using AutoSNAP, we discover an improved architecture (SNAPNet) which outperforms both the hand-engineered i3PosNet and the state-of-the-art architecture search method DARTS.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series, Journals: pub.dzne.de
700 1 _ |a Abolmaesumi, Purang
|0 0000-0002-7259-8609
|b 1
|e Editor
700 1 _ |a Stoyanov, Danail
|0 0000-0002-0980-3227
|b 2
|e Editor
700 1 _ |a Mateus, Diana
|0 0000-0002-2252-8717
|b 3
|e Editor
700 1 _ |a Zuluaga, Maria A.
|0 0000-0002-1147-766X
|b 4
|e Editor
700 1 _ |a Zhou, S. Kevin
|0 0000-0002-6881-4444
|b 5
|e Editor
700 1 _ |a Racoceanu, Daniel
|0 0000-0002-9416-1803
|b 6
|e Editor
700 1 _ |a Joskowicz, Leo
|0 0000-0002-3010-4770
|b 7
|e Editor
700 1 _ |a Kügler, David
|0 P:(DE-2719)2814290
|b 8
700 1 _ |a Uecker, Marc
|b 9
700 1 _ |a Kuijper, Arjan
|0 0000-0002-6413-0061
|b 10
700 1 _ |a Mukhopadhyay, Anirban
|0 0000-0003-0669-4018
|b 11
773 _ _ |a 10.1007/978-3-030-59716-0_36
909 C O |o oai:pub.dzne.de:280927
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2814290
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
920 1 _ |0 I:(DE-2719)1040310
|k AG Reuter
|l Artificial Intelligence in Medicine
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-2719)1040310
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21