Home > Publications Database > AutoSNAP: Automatically Learning Neural Architectures for Instrument Pose Estimation > print |
001 | 280927 | ||
005 | 20250918102642.0 | ||
020 | _ | _ | |a 978-3-030-59715-3 (print) |
020 | _ | _ | |a 978-3-030-59716-0 (electronic) |
024 | 7 | _ | |a 10.1007/978-3-030-59716-0_36 |2 doi |
024 | 7 | _ | |a 0302-9743 |2 ISSN |
024 | 7 | _ | |a 1611-3349 |2 ISSN |
037 | _ | _ | |a DZNE-2025-01010 |
100 | 1 | _ | |a Martel, Anne L. |0 0000-0003-1375-5501 |b 0 |e Editor |
111 | 2 | _ | |a Medical Imaging Computing and Computer Assisted Intervention |g MICCAI 2020 |c Lima |d 2020-10-04 - 2020-10-08 |w Peru |
245 | _ | _ | |a AutoSNAP: Automatically Learning Neural Architectures for Instrument Pose Estimation |
260 | _ | _ | |a Cham |c 2020 |b Springer International Publishing |
295 | 1 | 0 | |a Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 / Martel, Anne L. (Editor) [https://orcid.org/0000-0003-1375-5501] ; Cham : Springer International Publishing, 2020, Chapter 36 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-030-59715-3=978-3-030-59716-0 ; doi:10.1007/978-3-030-59716-0 |
300 | _ | _ | |a 375 - 384 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1758102367_31851 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Contribution to a book |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |m contb |
490 | 0 | _ | |a Lecture Notes in Computer Science |v 12263 |
520 | _ | _ | |a Despite recent successes, the advances in Deep Learning have not yet been fully translated to Computer Assisted Intervention (CAI) problems such as pose estimation of surgical instruments. Currently, neural architectures for classification and segmentation tasks are adopted ignoring significant discrepancies between CAI and these tasks. We propose an automatic framework (AutoSNAP) for instrument pose estimation problems, which discovers and learns architectures for neural networks. We introduce 1) an efficient testing environment for pose estimation, 2) a powerful architecture representation based on novel Symbolic Neural Architecture Patterns (SNAPs), and 3) an optimization of the architecture using an efficient search scheme. Using AutoSNAP, we discover an improved architecture (SNAPNet) which outperforms both the hand-engineered i3PosNet and the state-of-the-art architecture search method DARTS. |
536 | _ | _ | |a 354 - Disease Prevention and Healthy Aging (POF4-354) |0 G:(DE-HGF)POF4-354 |c POF4-354 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef Book Series, Journals: pub.dzne.de |
700 | 1 | _ | |a Abolmaesumi, Purang |0 0000-0002-7259-8609 |b 1 |e Editor |
700 | 1 | _ | |a Stoyanov, Danail |0 0000-0002-0980-3227 |b 2 |e Editor |
700 | 1 | _ | |a Mateus, Diana |0 0000-0002-2252-8717 |b 3 |e Editor |
700 | 1 | _ | |a Zuluaga, Maria A. |0 0000-0002-1147-766X |b 4 |e Editor |
700 | 1 | _ | |a Zhou, S. Kevin |0 0000-0002-6881-4444 |b 5 |e Editor |
700 | 1 | _ | |a Racoceanu, Daniel |0 0000-0002-9416-1803 |b 6 |e Editor |
700 | 1 | _ | |a Joskowicz, Leo |0 0000-0002-3010-4770 |b 7 |e Editor |
700 | 1 | _ | |a Kügler, David |0 P:(DE-2719)2814290 |b 8 |
700 | 1 | _ | |a Uecker, Marc |b 9 |
700 | 1 | _ | |a Kuijper, Arjan |0 0000-0002-6413-0061 |b 10 |
700 | 1 | _ | |a Mukhopadhyay, Anirban |0 0000-0003-0669-4018 |b 11 |
773 | _ | _ | |a 10.1007/978-3-030-59716-0_36 |
909 | C | O | |o oai:pub.dzne.de:280927 |p VDB |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 8 |6 P:(DE-2719)2814290 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-354 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Prevention and Healthy Aging |x 0 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-28 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-28 |
920 | 1 | _ | |0 I:(DE-2719)1040310 |k AG Reuter |l Artificial Intelligence in Medicine |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a contb |
980 | _ | _ | |a I:(DE-2719)1040310 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|