001     280948
005     20250921001957.0
024 7 _ |a 10.1016/j.celrep.2025.115735
|2 doi
024 7 _ |a pmid:40402745
|2 pmid
024 7 _ |a 2211-1247
|2 ISSN
024 7 _ |a 2639-1856
|2 ISSN
024 7 _ |a altmetric:177409675
|2 altmetric
037 _ _ |a DZNE-2025-01030
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Madej, Magdalena
|b 0
245 _ _ |a PUS10-induced tRNA fragmentation impacts retrotransposon-driven inflammation.
260 _ _ |a Maryland Heights, MO
|c 2025
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1758104169_31852
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Pseudouridine synthases (PUSs) catalyze the isomerization of uridine (U)-to-pseudouridine (Ψ) and have emerging roles in development and disease. How PUSs adapt gene expression under stress remains mostly unexplored. We identify an unconventional role for the Ψ 'writer' PUS10 impacting intracellular innate immunity. Using Pus10 knockout mice, we uncover cell-intrinsic upregulation of interferon (IFN) signaling, conferring resistance to inflammation in vivo. Pus10 loss alters tRNA-derived small RNAs (tdRs) abundance, perturbing translation and endogenous retroelements expression. These alterations promote proinflammatory RNA-DNA hybrids accumulation, potentially activating cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING). Supplementation with selected tdR pools partly rescues these effects through interactions with RNA processing factors that modulate immune responses, revealing a regulatory circuit that counteracts cell-intrinsic inflammation. By extension, we define a PUS10-specific molecular fingerprint linking its dysregulation to human autoimmune disorders, including inflammatory bowel diseases. Collectively, these findings establish PUS10 as a viral mimicry modulator, with broad implications for innate immune homeostasis and autoimmunity.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a CP: Molecular biology
|2 Other
650 _ 7 |a PUS10
|2 Other
650 _ 7 |a RNA-DNA hybrids
|2 Other
650 _ 7 |a cGAS-STING
|2 Other
650 _ 7 |a hematopoietic stem cell
|2 Other
650 _ 7 |a inflammation
|2 Other
650 _ 7 |a inflammatory bowel disease
|2 Other
650 _ 7 |a interferon
|2 Other
650 _ 7 |a pseudouridine
|2 Other
650 _ 7 |a tRNA-derived small RNAs
|2 Other
650 _ 7 |a transposable elements
|2 Other
650 _ 7 |a viral mimicry
|2 Other
650 _ 7 |a Retroelements
|2 NLM Chemicals
650 _ 7 |a RNA, Transfer
|0 9014-25-9
|2 NLM Chemicals
650 _ 7 |a pseudouridine synthases
|0 EC 5.4.99.-
|2 NLM Chemicals
650 _ 7 |a Intramolecular Transferases
|0 EC 5.4.-
|2 NLM Chemicals
650 _ 7 |a Hydro-Lyases
|0 EC 4.2.1.-
|2 NLM Chemicals
650 _ 7 |a Interferons
|0 9008-11-1
|2 NLM Chemicals
650 _ 7 |a Membrane Proteins
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Retroelements: genetics
|2 MeSH
650 _ 2 |a Inflammation: genetics
|2 MeSH
650 _ 2 |a Inflammation: pathology
|2 MeSH
650 _ 2 |a Inflammation: metabolism
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a RNA, Transfer: metabolism
|2 MeSH
650 _ 2 |a RNA, Transfer: genetics
|2 MeSH
650 _ 2 |a Mice, Knockout
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Immunity, Innate
|2 MeSH
650 _ 2 |a Intramolecular Transferases: metabolism
|2 MeSH
650 _ 2 |a Intramolecular Transferases: genetics
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Hydro-Lyases: metabolism
|2 MeSH
650 _ 2 |a Hydro-Lyases: genetics
|2 MeSH
650 _ 2 |a Interferons: metabolism
|2 MeSH
650 _ 2 |a Signal Transduction
|2 MeSH
650 _ 2 |a Membrane Proteins: metabolism
|2 MeSH
700 1 _ |a Ngoc, Phuong Cao Thi
|b 1
700 1 _ |a Muthukumar, Sowndarya
|b 2
700 1 _ |a Konturek-Cieśla, Anna
|b 3
700 1 _ |a Tucciarone, Silvia
|b 4
700 1 _ |a Germanos, Alexandre
|b 5
700 1 _ |a Ashworth, Christian
|b 6
700 1 _ |a Kotarsky, Knut
|b 7
700 1 _ |a Ghosh, Sudip
|b 8
700 1 _ |a Fan, Zhimeng
|b 9
700 1 _ |a Fritz, Helena
|b 10
700 1 _ |a Pascual-Gonzalez, Izei
|b 11
700 1 _ |a Huerta, Alain
|b 12
700 1 _ |a Guzzi, Nicola
|b 13
700 1 _ |a Colazzo, Anita
|b 14
700 1 _ |a Beneventi, Giulia
|b 15
700 1 _ |a Lee, Hang-mao
|0 P:(DE-2719)2814197
|b 16
700 1 _ |a Cieśla, Maciej
|b 17
700 1 _ |a Douse, Christopher
|b 18
700 1 _ |a Kato, Hiroki
|b 19
700 1 _ |a Swaminathan, Vinay
|b 20
700 1 _ |a Agace, William W
|b 21
700 1 _ |a Castellanos-Rubio, Ainara
|b 22
700 1 _ |a Salomoni, Paolo
|0 P:(DE-2719)2811779
|b 23
|u dzne
700 1 _ |a Bryder, David
|b 24
700 1 _ |a Bellodi, Cristian
|b 25
773 _ _ |a 10.1016/j.celrep.2025.115735
|g Vol. 44, no. 6, p. 115735 -
|0 PERI:(DE-600)2649101-1
|n 6
|p 115735
|t Cell reports
|v 44
|y 2025
|x 2211-1247
856 4 _ |u https://pub.dzne.de/record/280948/files/DZNE-2025-01030%20SUP.zip
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/280948/files/DZNE-2025-01030.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/280948/files/DZNE-2025-01030.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:280948
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 16
|6 P:(DE-2719)2814197
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 23
|6 P:(DE-2719)2811779
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:49:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:49:39Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:49:39Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL REP : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
920 1 _ |0 I:(DE-2719)1013032
|k AG Salomoni
|l Nuclear Function in CNS Pathophysiology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013032
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21