% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Nemali:280962,
author = {Nemali, A. and Bernal, J. and Yakupov, R. and Singh, Devesh
and Dyrba, M. and Incesoy, E. I. and Mukherjee, S. and
Peters, O. and Ersözlü, E. and Hellmann-Regen, J. and
Preis, Lukas and Priller, J. and Spruth, Eike Jakob and
Altenstein, S. and Lohse, A. and Schneider, Anja and
Fliessbach, K. and Kimmich, O. and Wiltfang, J. and Hansen,
N. and Schott, B. and Rostamzadeh, A. and Glanz, W. and
Butryn, M. and Buerger, K. and Janowitz, Daniel and Ewers,
Michael and Perneczky, R. and Rauchmann, Boris Stephan and
Teipel, S. and Kilimann, I. and Goerss, D. and Laske, C. and
Sodenkamp, S. and Spottke, A. and Coenjaerts, M. and
Brosseron, F. and Lüsebrink, F. and Dechent, P. and
Scheffler, K. and Hetzer, S. and Kleineidam, L. and Stark,
M. and Jessen, F. and Duzel, E. and Ziegler, G.},
title = {{SMAS}: {S}tructural {MRI}-based {AD} {S}core using
{B}ayesian supervised {VAE}.},
journal = {Computers in biology and medicine},
volume = {196},
number = {Pt C},
issn = {0010-4825},
address = {Amsterdam [u.a.]},
publisher = {Elsevier Science},
reportid = {DZNE-2025-01044},
pages = {110829},
year = {2025},
abstract = {This study introduces the Structural MRI-based Alzheimer's
Disease Score (SMAS), a novel index intended to quantify
Alzheimer's Disease (AD)-related morphometric patterns using
a deep learning Bayesian-supervised Variational Autoencoder
(Bayesian-SVAE). The SMAS index was constructed using
baseline structural MRI data from the DELCODE study and
evaluated longitudinally in two independent cohorts: DELCODE
(n=415) and ADNI (n=190). Our findings indicate that SMAS
has strong associations with cognitive performance (DELCODE:
r=-0.83; ADNI: r=-0.62), age (DELCODE: r=0.50; ADNI:
r=0.28), hippocampal volume (DELCODE: r=-0.44; ADNI:
r=-0.66), and total gray matter volume (DELCODE: r=-0.42;
ADNI: r=-0.47), suggesting its potential as a biomarker for
AD-related brain atrophy. Moreover, our longitudinal studies
indicated that SMAS may be useful for the early
identification and tracking of AD. The model demonstrated
significant predictive accuracy in distinguishing
cognitively healthy individuals from those with AD (DELCODE:
AUC=0.971 at baseline, 0.833 at 36 months; ADNI: AUC=0.817
at baseline, improving to 0.903 at 24 months). Notably, over
36 months, the SMAS index outperformed existing measures
such as SPARE-AD and hippocampal volume. The relevance map
analysis revealed significant morphological changes in key
AD-related brain regions, including the hippocampus,
posterior cingulate cortex, precuneus, and lateral parietal
cortex, highlighting that SMAS is a sensitive and
interpretable biomarker of brain atrophy, suitable for early
AD detection and longitudinal monitoring of disease
progression.},
keywords = {Alzheimer’s disease (Other) / Bayesian Supervised
Variational Autoencoder (Other) / Bayesian inference (Other)
/ Brain morphology indices (Other) / Cognitive decline
(Other)},
cin = {AG Düzel / AG Teipel / AG Mukherjee / AG Peters / AG
Dirnagl / AG Endres / AG Priller / AG Schneider / Patient
Studies (Bonn) / Clinical Research (Bonn) / AG Wiltfang / AG
Fischer / AG Dichgans / Clinical Research (Munich) / AG
Gasser / ICRU / AG Spottke / AG Jessen / AG Wagner / AG
Heneka},
ddc = {570},
cid = {I:(DE-2719)5000006 / I:(DE-2719)1510100 /
I:(DE-2719)1013030 / I:(DE-2719)5000000 / I:(DE-2719)1810002
/ I:(DE-2719)1811005 / I:(DE-2719)5000007 /
I:(DE-2719)1011305 / I:(DE-2719)1011101 / I:(DE-2719)1011001
/ I:(DE-2719)1410006 / I:(DE-2719)1410002 /
I:(DE-2719)5000022 / I:(DE-2719)1111015 / I:(DE-2719)1210000
/ I:(DE-2719)1240005 / I:(DE-2719)1011103 /
I:(DE-2719)1011102 / I:(DE-2719)1011201 /
I:(DE-2719)1011303},
pnm = {353 - Clinical and Health Care Research (POF4-353) / 354 -
Disease Prevention and Healthy Aging (POF4-354) / 352 -
Disease Mechanisms (POF4-352)},
pid = {G:(DE-HGF)POF4-353 / G:(DE-HGF)POF4-354 /
G:(DE-HGF)POF4-352},
typ = {PUB:(DE-HGF)16},
pubmed = {pmid:40818206},
doi = {10.1016/j.compbiomed.2025.110829},
url = {https://pub.dzne.de/record/280962},
}