001     281102
005     20250924102922.0
024 7 _ |a 10.1126/sciadv.adw6404
|2 doi
024 7 _ |a pmid:40901947
|2 pmid
037 _ _ |a DZNE-2025-01063
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Segen, Vladislava
|0 P:(DE-2719)9001409
|b 0
|e First author
245 _ _ |a Path integration impairments reveal early cognitive changes in subjective cognitive decline.
260 _ _ |a Washington, DC [u.a.]
|c 2025
|b Assoc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1758626920_10849
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Path integration, the ability to track one's position using self-motion cues, is critically dependent on the grid cell network in the entorhinal cortex, a region vulnerable to early Alzheimer's disease pathology. In this study, we examined path integration performance in individuals with subjective cognitive decline (SCD), a group at increased risk for Alzheimer's disease, and healthy controls using an immersive virtual reality task. We developed a Bayesian computational model to decompose path integration errors into distinct components. SCD participants exhibited significantly higher path integration error, primarily driven by increased memory leak, while other modeling-derived error sources, such as velocity gain, sensory, and reporting noise, remained comparable across groups. Our findings suggest that path integration deficits, specifically memory leak, may serve as an early marker of neurodegeneration in SCD and highlight the potential of self-motion-based navigation tasks for detecting presymptomatic Alzheimer's disease-related cognitive changes.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: physiopathology
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: diagnosis
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Bayes Theorem
|2 MeSH
650 _ 2 |a Alzheimer Disease: physiopathology
|2 MeSH
650 _ 2 |a Cognition
|2 MeSH
650 _ 2 |a Entorhinal Cortex: physiopathology
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Virtual Reality
|2 MeSH
650 _ 2 |a Case-Control Studies
|2 MeSH
700 1 _ |a Kabir, Md Rysul
|b 1
700 1 _ |a Streck, Adam
|b 2
700 1 _ |a Slavik, Jakub
|0 0000-0001-6465-663X
|b 3
700 1 _ |a Glanz, Wenzel
|0 P:(DE-2719)2811614
|b 4
700 1 _ |a Butryn, Michaela
|0 P:(DE-2719)9001011
|b 5
|u dzne
700 1 _ |a Newman, Ehren
|0 0000-0001-7006-4112
|b 6
700 1 _ |a Tiganj, Zoran
|b 7
700 1 _ |a Wolbers, Thomas
|0 P:(DE-2719)2810583
|b 8
|e Last author
773 _ _ |a 10.1126/sciadv.adw6404
|g Vol. 11, no. 36, p. eadw6404
|0 PERI:(DE-600)2810933-8
|n 36
|p eadw6404
|t Science advances
|v 11
|y 2025
|x 2375-2548
856 4 _ |u https://pub.dzne.de/record/281102/files/DZNE-2025-01063%20SUP.zip
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/281102/files/DZNE-2025-01063.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/281102/files/DZNE-2025-01063.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:281102
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001409
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2811614
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)9001011
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2810583
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI ADV : 2022
|d 2024-12-18
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b SCI ADV : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-05-14T07:33:42Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-05-14T07:33:42Z
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 1 _ |0 I:(DE-2719)1310002
|k AG Wolbers
|l Aging, Cognition and Technology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1310002
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21