000281124 001__ 281124
000281124 005__ 20251005002022.0
000281124 0247_ $$2doi$$a10.1088/2057-1976/adfdea
000281124 0247_ $$2pmid$$apmid:40840482
000281124 0247_ $$2altmetric$$aaltmetric:180533596
000281124 037__ $$aDZNE-2025-01083
000281124 041__ $$aEnglish
000281124 082__ $$a610
000281124 1001_ $$00000-0002-8348-5554$$aHainke, Laura$$b0
000281124 245__ $$a40 Hz steady-state visually evoked potentials recovered during oscillating transcranial electrical stimulation.
000281124 260__ $$aBristol$$bIOP Publ.$$c2025
000281124 3367_ $$2DRIVER$$aarticle
000281124 3367_ $$2DataCite$$aOutput Types/Journal article
000281124 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1759225726_23816
000281124 3367_ $$2BibTeX$$aARTICLE
000281124 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281124 3367_ $$00$$2EndNote$$aJournal Article
000281124 520__ $$aBackground. Combining Transcranial Electrical Stimulation and Visual Stimulation at the gamma frequency of 40 Hz holds scientific and clinical potential, but requires concurrent electrophysiological measurement to quantify neuronal effects. This poses substantial methodological challenges: electrical stimulation artifacts largely overshadow EEG signals; gamma signals' amplitude is particularly low; and oculo-muscular confounds overlap in frequency. With appropriate artifact removal, we aimed to record 40 Hz Steady-State Visually Evoked Potentials (SSVEPs) with EEG during frequency-matched electrical stimulation and explore possible interactions.Methods. In three experiments (N = 25 healthy volunteers each), we tested if electrical and visual stimulation might interact depending on which brain areas are electrically stimulated or whether the respective frequencies match-and, importantly, how effectively the data processing pipeline can separate artifacts from genuine neuronal activity. Analysing SSVEPs in the time domain, as opposed to the traditional frequency domain, enabled us to mitigate electrical artifacts flexibly through an adaptive template subtraction approach with millisecond precision. It also allowed us to extract SSVEP waveform information, in addition to amplitude. Compared to previous approaches for low frequencies, our algorithm has improved artifact template fitting, a new interpolation feature, and refined segment rejection criteria.Main Results. We successfully recovered 40 Hz SSVEPs during frequency-matched electrical stimulation applied to central and occipital regions. They closely matched baseline SSVEPs without electrical stimulation in waveform shape. A control condition (no visual stimulation, only electrical) produced uncorrelated low-amplitude signals, further demonstrating robust artifact removal. No interactions between electrical and visual stimulation were found.Significance. We demonstrated how 40 Hz SSVEPs can be reliably measured with EEG during frequency-matched electrical brain stimulation, distinguishing neuronal activity from electrical or physiological confounds. This method now enables fundamental and clinical researchers to combine rhythmic sensory and electrical stimulation in the gamma band and concurrently quantify neuronal electrophysiological effects.
000281124 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000281124 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000281124 650_7 $$2Other$$aelectroencephalography (EEG)
000281124 650_7 $$2Other$$aflicker
000281124 650_7 $$2Other$$agamma
000281124 650_7 $$2Other$$amultimodal
000281124 650_7 $$2Other$$anon-invasive brain stimulation
000281124 650_7 $$2Other$$asteady-state visually evoked potential (SSVEP)
000281124 650_7 $$2Other$$atranscranial electrical stimulation
000281124 650_2 $$2MeSH$$aHumans
000281124 650_2 $$2MeSH$$aEvoked Potentials, Visual: physiology
000281124 650_2 $$2MeSH$$aMale
000281124 650_2 $$2MeSH$$aFemale
000281124 650_2 $$2MeSH$$aAdult
000281124 650_2 $$2MeSH$$aTranscranial Direct Current Stimulation: methods
000281124 650_2 $$2MeSH$$aElectroencephalography: methods
000281124 650_2 $$2MeSH$$aArtifacts
000281124 650_2 $$2MeSH$$aAlgorithms
000281124 650_2 $$2MeSH$$aPhotic Stimulation
000281124 650_2 $$2MeSH$$aYoung Adult
000281124 650_2 $$2MeSH$$aElectric Stimulation
000281124 650_2 $$2MeSH$$aSignal Processing, Computer-Assisted
000281124 7001_ $$00000-0002-8572-9268$$aSpitschan, Manuel$$b1
000281124 7001_ $$0P:(DE-2719)2811122$$aPriller, Josef$$b2$$udzne
000281124 7001_ $$aTaylor, Paul$$b3
000281124 7001_ $$aDowsett, James$$b4
000281124 773__ $$0PERI:(DE-600)2844309-3$$a10.1088/2057-1976/adfdea$$gVol. 11, no. 5, p. 055031 -$$n5$$p055031$$tBiomedical physics & engineering express$$v11$$x2057-1976$$y2025
000281124 8564_ $$uhttps://pub.dzne.de/record/281124/files/DZNE-2025-01083%20SUP.pdf
000281124 8564_ $$uhttps://pub.dzne.de/record/281124/files/DZNE-2025-01083.pdf$$yOpenAccess
000281124 8564_ $$uhttps://pub.dzne.de/record/281124/files/DZNE-2025-01083%20SUP.pdf?subformat=pdfa$$xpdfa
000281124 8564_ $$uhttps://pub.dzne.de/record/281124/files/DZNE-2025-01083.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281124 909CO $$ooai:pub.dzne.de:281124$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000281124 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811122$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000281124 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000281124 9141_ $$y2025
000281124 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
000281124 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000281124 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMED PHYS ENG EXPR : 2022$$d2024-12-17
000281124 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-17
000281124 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
000281124 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-17
000281124 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281124 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-17$$wger
000281124 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
000281124 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
000281124 9201_ $$0I:(DE-2719)5000007$$kAG Priller$$lTranslational Neuropsychiatry$$x0
000281124 980__ $$ajournal
000281124 980__ $$aVDB
000281124 980__ $$aUNRESTRICTED
000281124 980__ $$aI:(DE-2719)5000007
000281124 9801_ $$aFullTexts