001     281346
005     20251008102356.0
024 7 _ |a 10.1007/s11064-025-04558-w
|2 doi
024 7 _ |a pmid:40965686
|2 pmid
024 7 _ |a pmc:PMC12446404
|2 pmc
024 7 _ |a 0364-3190
|2 ISSN
024 7 _ |a 1573-6903
|2 ISSN
037 _ _ |a DZNE-2025-01093
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kherbouche, Oussama
|b 0
245 _ _ |a Induced Overexpression of Connexin43 in Astrocytes Attenuates the Progression of Experimental Temporal Lobe Epilepsy.
260 _ _ |a Dordrecht [u.a.]
|c 2025
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1759825261_17318
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Astrocytic gap junctional communication plays a critical role in regulating neuronal activity and network synchronization, yet its precise contributions to brain function and the pathogenesis of neurological disorders remains incompletely understood. To address this, we generated a transgenic mouse line with inducible, astrocyte-specific overexpression of the gap junction protein connexin43 (Cx43). In these mice, hippocampal astrocytes exhibited markedly elevated Cx43 protein levels and a ~ 20% increase in intercellular gap junction coupling. Enhanced coupling was accompanied by a reduction in astrocytic cell volume and branching, without affecting passive membrane properties or astrocyte density in the hippocampus. Cx43 overexpression had no detectable impact on adult neurogenesis in the dentate gyrus, nor did it alter hippocampal synaptic efficacy or plasticity. Notably, in a mouse model of temporal lobe epilepsy with hippocampal sclerosis, astrocytic Cx43 overexpression attenuated chronic epileptic activity and the extent of sclerosis, supporting an antiepileptic role of the astroglial network. Collectively, these findings enhance our understanding of the functional relevance of astrocytic gap junction coupling in health and disease, with potential implications for the design of new treatment strategies.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Connexin 43
|2 Other
650 _ 7 |a EEG
|2 Other
650 _ 7 |a Electrophysiology
|2 Other
650 _ 7 |a Gap junction coupling
|2 Other
650 _ 7 |a Hippocampal sclerosis
|2 Other
650 _ 7 |a Temporal lobe epilepsy
|2 Other
650 _ 7 |a Connexin 43
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Astrocytes: metabolism
|2 MeSH
650 _ 2 |a Connexin 43: biosynthesis
|2 MeSH
650 _ 2 |a Connexin 43: genetics
|2 MeSH
650 _ 2 |a Epilepsy, Temporal Lobe: metabolism
|2 MeSH
650 _ 2 |a Epilepsy, Temporal Lobe: pathology
|2 MeSH
650 _ 2 |a Mice, Transgenic
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Disease Progression
|2 MeSH
650 _ 2 |a Hippocampus: metabolism
|2 MeSH
650 _ 2 |a Hippocampus: pathology
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Gap Junctions: metabolism
|2 MeSH
650 _ 2 |a Male
|2 MeSH
700 1 _ |a Henning, Lukas
|b 1
700 1 _ |a Niemann, Pia
|b 2
700 1 _ |a Geisen, Caroline
|b 3
700 1 _ |a Seifert, Gerald
|b 4
700 1 _ |a Henneberger, Christian
|0 P:(DE-2719)2811625
|b 5
|u dzne
700 1 _ |a Fleischmann, Bernd K
|b 6
700 1 _ |a Steinhäuser, Christian
|0 0000-0003-2579-8357
|b 7
700 1 _ |a Bedner, Peter
|0 0000-0003-0090-7553
|b 8
773 _ _ |a 10.1007/s11064-025-04558-w
|g Vol. 50, no. 5, p. 303
|0 PERI:(DE-600)2018503-0
|n 5
|p 303
|t Neurochemical research
|v 50
|y 2025
|x 0364-3190
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/281346/files/DZNE-2025-01093.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/281346/files/DZNE-2025-01093.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:281346
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2811625
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROCHEM RES : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
920 1 _ |0 I:(DE-2719)1013029
|k AG Henneberger
|l Synaptic and Glial Plasticity
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013029
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21