001     281359
005     20251008102405.0
024 7 _ |a 10.1039/D5FO00761E
|2 doi
024 7 _ |a pmid:40856313
|2 pmid
024 7 _ |a 2042-6496
|2 ISSN
024 7 _ |a 2042-650X
|2 ISSN
037 _ _ |a DZNE-2025-01106
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Klier, Kristin
|0 0009-0003-3098-5867
|b 0
245 _ _ |a Integrating population-based metabolomics with computational microbiome modelling identifies methanol as a urinary biomarker for protective diet-microbiome-host interactions.
260 _ _ |a Cambridge
|c 2025
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1759835871_17321
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background: Diet-microbiome interactions are core to human health, in particular through bacterial fibre degradation pathways. However, biomarkers reflective of these interactions are not well described. Methods: Using the population-based SHIP-START-0 cohort (n = 4017), we combined metabolome-wide screenings with elastic net machine learning models on 33 food items captured using a food frequency questionnaire (FFQ) and 43 targeted urine nuclear magnetic resonance (NMR) metabolites, identifying methanol as a marker of plant-derived food items. We utilised the independent SHIP-START-0 cohort for the replication of food-metabolite associations. Moreover, constraint-based microbiome community modelling using the Human Microbiome data (n = 149) was performed to predict and analyse the contribution of the microbiome to the human methanol pools through bacterial fibre degradation. Finally, we employed prospective survival analysis in the SHIP-START-0 cohort, testing urinary methanol on its predictive value for mortality. Results: Among 21 metabolites associated with 17 dietary FFQ variables after correction for multiple testing, urinary methanol emerged as the top hit for a range of plant-derived food items. In line with this, constraint-based community modelling demonstrated that gut microbiomes can produce methanol via pectin degradation with the genera Bacteroides (68.9%) and Faecalibacterium (20.6%) being primarily responsible. Moreover, microbial methanol production capacity was a marker of high microbiome diversity. Finally, prospective survival analysis in SHIP-START-0 revealed that higher urinary methanol is associated with lower all-cause mortality in fully adjusted Cox regressions. Conclusion: Integrating population-based metabolomics and computational microbiome modelling identified urinary methanol as a promising biomarker for protective diet-microbiome interactions linked to microbial pectin degradation.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 7 |a Methanol
|0 Y4S76JWI15
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Biomarkers: urine
|2 MeSH
650 _ 2 |a Methanol: urine
|2 MeSH
650 _ 2 |a Methanol: metabolism
|2 MeSH
650 _ 2 |a Metabolomics
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Gastrointestinal Microbiome: physiology
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Diet
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Host Microbial Interactions
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
700 1 _ |a Mehrjerd, Ameneh
|b 1
700 1 _ |a Fässler, Daniel
|b 2
700 1 _ |a Franck, Maximilien
|b 3
700 1 _ |a Weihs, Antoine
|0 P:(DE-2719)9002604
|b 4
|u dzne
700 1 _ |a Budde, Kathrin
|b 5
700 1 _ |a Bahls, Martin
|b 6
700 1 _ |a Frost, Fabian
|b 7
700 1 _ |a Henning, Ann-Kristin
|b 8
700 1 _ |a Heinken, Almut
|b 9
700 1 _ |a Völzke, Henry
|b 10
700 1 _ |a Dörr, Marcus
|b 11
700 1 _ |a Nauck, Matthias
|b 12
700 1 _ |a Grabe, Hans Jörgen
|0 P:(DE-2719)2811781
|b 13
|u dzne
700 1 _ |a Friedrich, Nele
|b 14
700 1 _ |a Hertel, Johannes
|b 15
773 _ _ |a 10.1039/D5FO00761E
|g Vol. 16, no. 18, p. 7067 - 7081
|0 PERI:(DE-600)2578152-2
|n 18
|p 7067 - 7081
|t Food & function
|v 16
|y 2025
|x 2042-6496
856 4 _ |u https://pub.dzne.de/record/281359/files/DZNE-2025-01106%20SUP1.pdf
856 4 _ |u https://pub.dzne.de/record/281359/files/DZNE-2025-01106%20SUP2.xlsx
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/281359/files/DZNE-2025-01106.pdf
856 4 _ |u https://pub.dzne.de/record/281359/files/DZNE-2025-01106%20SUP2.csv
856 4 _ |u https://pub.dzne.de/record/281359/files/DZNE-2025-01106%20SUP2.ods
856 4 _ |u https://pub.dzne.de/record/281359/files/DZNE-2025-01106%20SUP2.xls
856 4 _ |x pdfa
|u https://pub.dzne.de/record/281359/files/DZNE-2025-01106%20SUP1.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/281359/files/DZNE-2025-01106.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:281359
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9002604
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)2811781
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FOOD FUNCT : 2022
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FOOD FUNCT : 2022
|d 2025-01-07
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 1 _ |0 I:(DE-2719)1510600
|k AG Hoffmann
|l Translational Health Care Research
|x 0
920 1 _ |0 I:(DE-2719)5000001
|k AG Grabe
|l Biomarkers of Dementia in the General Population
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1510600
980 _ _ |a I:(DE-2719)5000001
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21