| 001 | 281359 | ||
| 005 | 20251008102405.0 | ||
| 024 | 7 | _ | |a 10.1039/D5FO00761E |2 doi |
| 024 | 7 | _ | |a pmid:40856313 |2 pmid |
| 024 | 7 | _ | |a 2042-6496 |2 ISSN |
| 024 | 7 | _ | |a 2042-650X |2 ISSN |
| 037 | _ | _ | |a DZNE-2025-01106 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Klier, Kristin |0 0009-0003-3098-5867 |b 0 |
| 245 | _ | _ | |a Integrating population-based metabolomics with computational microbiome modelling identifies methanol as a urinary biomarker for protective diet-microbiome-host interactions. |
| 260 | _ | _ | |a Cambridge |c 2025 |b RSC |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1759835871_17321 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Background: Diet-microbiome interactions are core to human health, in particular through bacterial fibre degradation pathways. However, biomarkers reflective of these interactions are not well described. Methods: Using the population-based SHIP-START-0 cohort (n = 4017), we combined metabolome-wide screenings with elastic net machine learning models on 33 food items captured using a food frequency questionnaire (FFQ) and 43 targeted urine nuclear magnetic resonance (NMR) metabolites, identifying methanol as a marker of plant-derived food items. We utilised the independent SHIP-START-0 cohort for the replication of food-metabolite associations. Moreover, constraint-based microbiome community modelling using the Human Microbiome data (n = 149) was performed to predict and analyse the contribution of the microbiome to the human methanol pools through bacterial fibre degradation. Finally, we employed prospective survival analysis in the SHIP-START-0 cohort, testing urinary methanol on its predictive value for mortality. Results: Among 21 metabolites associated with 17 dietary FFQ variables after correction for multiple testing, urinary methanol emerged as the top hit for a range of plant-derived food items. In line with this, constraint-based community modelling demonstrated that gut microbiomes can produce methanol via pectin degradation with the genera Bacteroides (68.9%) and Faecalibacterium (20.6%) being primarily responsible. Moreover, microbial methanol production capacity was a marker of high microbiome diversity. Finally, prospective survival analysis in SHIP-START-0 revealed that higher urinary methanol is associated with lower all-cause mortality in fully adjusted Cox regressions. Conclusion: Integrating population-based metabolomics and computational microbiome modelling identified urinary methanol as a promising biomarker for protective diet-microbiome interactions linked to microbial pectin degradation. |
| 536 | _ | _ | |a 353 - Clinical and Health Care Research (POF4-353) |0 G:(DE-HGF)POF4-353 |c POF4-353 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
| 650 | _ | 7 | |a Biomarkers |2 NLM Chemicals |
| 650 | _ | 7 | |a Methanol |0 Y4S76JWI15 |2 NLM Chemicals |
| 650 | _ | 2 | |a Humans |2 MeSH |
| 650 | _ | 2 | |a Biomarkers: urine |2 MeSH |
| 650 | _ | 2 | |a Methanol: urine |2 MeSH |
| 650 | _ | 2 | |a Methanol: metabolism |2 MeSH |
| 650 | _ | 2 | |a Metabolomics |2 MeSH |
| 650 | _ | 2 | |a Male |2 MeSH |
| 650 | _ | 2 | |a Gastrointestinal Microbiome: physiology |2 MeSH |
| 650 | _ | 2 | |a Female |2 MeSH |
| 650 | _ | 2 | |a Middle Aged |2 MeSH |
| 650 | _ | 2 | |a Diet |2 MeSH |
| 650 | _ | 2 | |a Adult |2 MeSH |
| 650 | _ | 2 | |a Host Microbial Interactions |2 MeSH |
| 650 | _ | 2 | |a Aged |2 MeSH |
| 700 | 1 | _ | |a Mehrjerd, Ameneh |b 1 |
| 700 | 1 | _ | |a Fässler, Daniel |b 2 |
| 700 | 1 | _ | |a Franck, Maximilien |b 3 |
| 700 | 1 | _ | |a Weihs, Antoine |0 P:(DE-2719)9002604 |b 4 |u dzne |
| 700 | 1 | _ | |a Budde, Kathrin |b 5 |
| 700 | 1 | _ | |a Bahls, Martin |b 6 |
| 700 | 1 | _ | |a Frost, Fabian |b 7 |
| 700 | 1 | _ | |a Henning, Ann-Kristin |b 8 |
| 700 | 1 | _ | |a Heinken, Almut |b 9 |
| 700 | 1 | _ | |a Völzke, Henry |b 10 |
| 700 | 1 | _ | |a Dörr, Marcus |b 11 |
| 700 | 1 | _ | |a Nauck, Matthias |b 12 |
| 700 | 1 | _ | |a Grabe, Hans Jörgen |0 P:(DE-2719)2811781 |b 13 |u dzne |
| 700 | 1 | _ | |a Friedrich, Nele |b 14 |
| 700 | 1 | _ | |a Hertel, Johannes |b 15 |
| 773 | _ | _ | |a 10.1039/D5FO00761E |g Vol. 16, no. 18, p. 7067 - 7081 |0 PERI:(DE-600)2578152-2 |n 18 |p 7067 - 7081 |t Food & function |v 16 |y 2025 |x 2042-6496 |
| 856 | 4 | _ | |u https://pub.dzne.de/record/281359/files/DZNE-2025-01106%20SUP1.pdf |
| 856 | 4 | _ | |u https://pub.dzne.de/record/281359/files/DZNE-2025-01106%20SUP2.xlsx |
| 856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/281359/files/DZNE-2025-01106.pdf |
| 856 | 4 | _ | |u https://pub.dzne.de/record/281359/files/DZNE-2025-01106%20SUP2.csv |
| 856 | 4 | _ | |u https://pub.dzne.de/record/281359/files/DZNE-2025-01106%20SUP2.ods |
| 856 | 4 | _ | |u https://pub.dzne.de/record/281359/files/DZNE-2025-01106%20SUP2.xls |
| 856 | 4 | _ | |x pdfa |u https://pub.dzne.de/record/281359/files/DZNE-2025-01106%20SUP1.pdf?subformat=pdfa |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/281359/files/DZNE-2025-01106.pdf?subformat=pdfa |
| 909 | C | O | |o oai:pub.dzne.de:281359 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 4 |6 P:(DE-2719)9002604 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 13 |6 P:(DE-2719)2811781 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-353 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Clinical and Health Care Research |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-07 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FOOD FUNCT : 2022 |d 2025-01-07 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-07 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b FOOD FUNCT : 2022 |d 2025-01-07 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2025-01-07 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-07 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-07 |
| 920 | 1 | _ | |0 I:(DE-2719)1510600 |k AG Hoffmann |l Translational Health Care Research |x 0 |
| 920 | 1 | _ | |0 I:(DE-2719)5000001 |k AG Grabe |l Biomarkers of Dementia in the General Population |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-2719)1510600 |
| 980 | _ | _ | |a I:(DE-2719)5000001 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|