000281366 001__ 281366
000281366 005__ 20251008102406.0
000281366 0247_ $$2doi$$a10.3389/fnagi.2025.1587395
000281366 0247_ $$2pmid$$apmid:40933821
000281366 0247_ $$2pmc$$apmc:PMC12417520
000281366 037__ $$aDZNE-2025-01113
000281366 041__ $$aEnglish
000281366 082__ $$a610
000281366 1001_ $$aFischer, Florian U$$b0
000281366 245__ $$aCognitive training gain transfer in cognitively healthy aging: per protocol results of the German AgeGain study.
000281366 260__ $$aLausanne$$bFrontiers Research Foundation$$c2025
000281366 3367_ $$2DRIVER$$aarticle
000281366 3367_ $$2DataCite$$aOutput Types/Journal article
000281366 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1759836376_17317
000281366 3367_ $$2BibTeX$$aARTICLE
000281366 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281366 3367_ $$00$$2EndNote$$aJournal Article
000281366 520__ $$aCognitive decline is part of the normal aging process, but also a major risk factor for dementia. Cognitive training interventions aim to attenuate cognitive decline, but training gains need to be transferable to untrained cognitive abilities to influence everyday function. Furthermore, the neurobiological basis of cognitive training gain transfer remains elusive. A possible candidate is increased bilateral hemisphere usage enabled by efficient structural connectivity, especially of prefrontal regions. Therefore, the present multicentric study used a cognitive training intervention to demonstrate training transfer and identify neurobiological modulators of successful transfer.In total 235 subjects were enrolled in AgeGain; 180 underwent a broad 4-week cognitive training intervention at three study sites. Pre- and post-training neuropsychological testing was conducted and successful transferers were identified according to preregistered definitions. Pre-training, subjects underwent diffusion and functional MRI to assess interhemispheric connectivity, measured as microstructural integrity of the corpus callosum and lateralization of functional activation patterns during a cognitive control task. Logistic regression models were estimated to predict successful transfer based on structural connectivity and bilateralization of activation patterns.Out of 180 subjects, 74 showed short-term training gain transfer that was maintained over 3 months in 19 subjects. Neither microstructural integrity of the corpus callosum, nor bilateralized activation predicted training gain transfer alone. However, their interaction was associated with long-term transfer over 3 months: subjects with higher mean diffusivity of the corpus callosum and more bilateral functional activity or conversely with lower diffusivity of the corpus callosum and more lateral functional activity were more likely successful long-term transferers.We demonstrated successful training gain transfer in 41.1% of subjects, among whom 25.7% maintained the transfer over 3 months. Successful long-term transfer of training gains may depend on divergent mechanisms of structural and functional connectivity, which may explain previous heterogeneous results in the literature.German Clinical Trials Register (DRKS), ID: DRKS00013077. Registered on November 19th 2017.
000281366 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000281366 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000281366 650_7 $$2Other$$acognitive training
000281366 650_7 $$2Other$$acognitive transfer
000281366 650_7 $$2Other$$afunctional connectivity
000281366 650_7 $$2Other$$ahealthy aging
000281366 650_7 $$2Other$$ainterhemispheric structural connectivity
000281366 7001_ $$aKollmann, Bianca$$b1
000281366 7001_ $$aWolf, Dominik$$b2
000281366 7001_ $$aSebastian, Alexandra$$b3
000281366 7001_ $$aKnaepen, Kristel$$b4
000281366 7001_ $$aRiedel, David$$b5
000281366 7001_ $$aMierau, Andreas$$b6
000281366 7001_ $$aRuffini, Nicolas$$b7
000281366 7001_ $$aEndres, Kristina$$b8
000281366 7001_ $$aWinter, Jennifer$$b9
000281366 7001_ $$aStrüder, Heiko K$$b10
000281366 7001_ $$aBischof, Gerard N$$b11
000281366 7001_ $$0P:(DE-HGF)0$$aFaraza, Sofia$$b12
000281366 7001_ $$aBaier, Bernhard$$b13
000281366 7001_ $$aBinder, Harald$$b14
000281366 7001_ $$0P:(DE-2719)2811239$$aDrzezga, Alexander$$b15$$udzne
000281366 7001_ $$0P:(DE-2719)2000026$$aTeipel, Stefan$$b16$$udzne
000281366 7001_ $$aFellgiebel, Andreas$$b17
000281366 7001_ $$aTüscher, Oliver$$b18
000281366 773__ $$0PERI:(DE-600)2558898-9$$a10.3389/fnagi.2025.1587395$$gVol. 17, p. 1587395$$p1587395$$tFrontiers in aging neuroscience$$v17$$x1663-4365$$y2025
000281366 8564_ $$uhttps://pub.dzne.de/record/281366/files/DZNE-2025-01113.pdf$$yOpenAccess
000281366 8564_ $$uhttps://pub.dzne.de/record/281366/files/DZNE-2025-01113.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281366 909CO $$ooai:pub.dzne.de:281366$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000281366 9101_ $$0I:(DE-588)1065079516$$6P:(DE-HGF)0$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b12$$kDZNE
000281366 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811239$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b15$$kDZNE
000281366 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000026$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b16$$kDZNE
000281366 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000281366 9141_ $$y2025
000281366 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
000281366 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
000281366 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-16
000281366 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-16
000281366 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000281366 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT AGING NEUROSCI : 2022$$d2024-12-16
000281366 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-06T07:55:22Z
000281366 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-06T07:55:22Z
000281366 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
000281366 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-16
000281366 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
000281366 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-16
000281366 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281366 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-01-06T07:55:22Z
000281366 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-16
000281366 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
000281366 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
000281366 9201_ $$0I:(DE-2719)1510100$$kAG Teipel$$lClinical Dementia Research (Rostock /Greifswald)$$x0
000281366 9201_ $$0I:(DE-2719)1011202$$kAG Boecker$$lPositron Emissions Tomography (PET)$$x1
000281366 980__ $$ajournal
000281366 980__ $$aVDB
000281366 980__ $$aUNRESTRICTED
000281366 980__ $$aI:(DE-2719)1510100
000281366 980__ $$aI:(DE-2719)1011202
000281366 9801_ $$aFullTexts