000281367 001__ 281367
000281367 005__ 20251008102406.0
000281367 0247_ $$2doi$$a10.1109/SIU66497.2025.11112382
000281367 037__ $$aDZNE-2025-01114
000281367 041__ $$aTurkish
000281367 1001_ $$aŞen, Mehmet Umut$$b0
000281367 1112_ $$a33rd Signal Processing and Communications Applications Conference$$cSile$$d2025-06-25 - 2025-06-28$$gSIU 2025$$wIstanbul
000281367 245__ $$aTranscription of Ottoman Documents using Transformer Based Models | Osmanlica Dok manlarin D n st r c Tabanli Modeller ile Transkripsiyonu
000281367 260__ $$bIEEE$$c2025
000281367 29510 $$a2025 33rd Signal Processing and Communications Applications Conference (SIU) : [Proceedings] - IEEE, 2025. - ISBN 979-8-3315-6655-5 - doi:10.1109/SIU66497.2025.11112382
000281367 300__ $$a1 - 4
000281367 3367_ $$2ORCID$$aCONFERENCE_PAPER
000281367 3367_ $$033$$2EndNote$$aConference Paper
000281367 3367_ $$2BibTeX$$aINPROCEEDINGS
000281367 3367_ $$2DRIVER$$aconferenceObject
000281367 3367_ $$2DataCite$$aOutput Types/Conference Paper
000281367 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1759836423_17319
000281367 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000281367 520__ $$aAlthough access to a large number of Ottoman documents has become easier today, the Arabic-Persian-based Ottoman script remains a barrier for interested users in utilizing these documents. To address this challenge, there is a need for automatic transcription systems. While some deep learning-based commercial and academic models exist for Ottoman transcription, no studies have yet explored models based on transformer architectures. This paper introduces an Ottoman transcription system developed using TrOCR, a transformer-based model. Instead of the commonly used two-step approach in the literature, a model was designed to perform both optical character recognition and transcription into Turkish in one step. Additionally, the decoder responsible for language modeling was initialized with a BERT-based model trained on Turkish data, achieving results comparable to the original model. During testing, this model produced outputs more quickly due to improved tokenization performance.
000281367 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000281367 588__ $$aDataset connected to CrossRef Conference
000281367 7001_ $$0P:(DE-2719)9003244$$aBilecen, Ali$$b1$$udzne
000281367 7001_ $$aBilgin Taşdemir, Esma Fatıma$$b2
000281367 7001_ $$aYanıkoğlu, Berrin$$b3
000281367 773__ $$a10.1109/SIU66497.2025.11112382
000281367 8564_ $$uhttps://pub.dzne.de/record/281367/files/DZNE-2025-01114.pdf$$yRestricted
000281367 8564_ $$uhttps://pub.dzne.de/record/281367/files/DZNE-2025-01114.pdf?subformat=pdfa$$xpdfa$$yRestricted
000281367 909CO $$ooai:pub.dzne.de:281367$$pVDB
000281367 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9003244$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000281367 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000281367 9141_ $$y2025
000281367 9201_ $$0I:(DE-2719)1013041$$kAG Gokce$$lSpatial Dynamics of Neurodegeneration$$x0
000281367 980__ $$acontrib
000281367 980__ $$aVDB
000281367 980__ $$acontb
000281367 980__ $$aI:(DE-2719)1013041
000281367 980__ $$aUNRESTRICTED