001     281434
005     20251012002046.0
024 7 _ |a 10.1038/s41598-025-20148-w
|2 doi
024 7 _ |a pmid:40987805
|2 pmid
024 7 _ |a altmetric:181642514
|2 altmetric
037 _ _ |a DZNE-2025-01119
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Rassmann, Sebastian
|0 P:(DE-2719)9001988
|b 0
|e First author
245 _ _ |a Population-specific calibration and validation of an open-source bone age AI.
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1759836745_17320
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Assessing skeletal maturity through bone age (BA) evaluation is crucial for monitoring children's growth and guiding treatments, such as hormonal therapy and orthopedic interventions. In recent years, artificial intelligence (AI) methods have been developed to automate BA assessment. However, bone growth patterns may vary by ancestry, and many AI models are trained on limited population datasets, raising concerns about their applicability to populations not included in the training process. To address this shortcoming for the case of the Georgian population, we retrospectively collected 381 pediatric hand X-rays and established a manual BA reference rating from seven local pediatric radiologists and endocrinologists. We then used a subset of 121 images to perform a sex-specific linear calibration of the open-source AI, Deeplasia, creating Deeplasia-GE. On the held-out test set (n = 260), the default version of Deeplasia achieved a mean absolute difference (MAD) of 6.57 months, which improved to 5.69 months after calibration. We observed that the default Deeplasia overestimates the BA in the Georgian cohort with a signed mean difference (SMD) of + 2.85 and + 5.35 months for females and males respectively, which after calibration is significantly reduced to -0.03 and + 0.58 months for females and males, respectively. We find that Deeplasia-GE has a smaller error than all the raters and, by design, Deeplasia-GE inherits the high test-retest reliability from Deeplasia. These findings suggest that Deeplasia-GE is a reliable AI-based BA assessment method for Georgian children.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Artificial intelligence
|2 Other
650 _ 7 |a Global health equity
|2 Other
650 _ 7 |a Hand x-rays
|2 Other
650 _ 7 |a Model calibration
|2 Other
650 _ 7 |a Open-Source
|2 Other
650 _ 7 |a Pediatric bone age
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Age Determination by Skeleton: methods
|2 MeSH
650 _ 2 |a Child
|2 MeSH
650 _ 2 |a Artificial Intelligence
|2 MeSH
650 _ 2 |a Calibration
|2 MeSH
650 _ 2 |a Retrospective Studies
|2 MeSH
650 _ 2 |a Child, Preschool
|2 MeSH
650 _ 2 |a Adolescent
|2 MeSH
650 _ 2 |a Infant
|2 MeSH
650 _ 2 |a Reproducibility of Results
|2 MeSH
700 1 _ |a Abashishvili, Luka
|b 1
700 1 _ |a Melikidze, Elene
|b 2
700 1 _ |a Sukhiashvili, Anastasia
|b 3
700 1 _ |a Lartsuliani, Megi
|b 4
700 1 _ |a Chkhaidze, Ivane
|b 5
700 1 _ |a Tskhvediani, Nino
|b 6
700 1 _ |a Gordeziani, Tinatin
|b 7
700 1 _ |a Kvaratskhelia, Ekaterine
|b 8
700 1 _ |a Kheladze, Nino
|b 9
700 1 _ |a Rekhviashvili, Maia
|b 10
700 1 _ |a Rodonaia, Salome
|b 11
700 1 _ |a Sukhitashvili, Natia
|b 12
700 1 _ |a Urushadze, Nata
|b 13
700 1 _ |a Krawitz, Peter
|b 14
700 1 _ |a Tkemaladze, Tinatin
|b 15
700 1 _ |a Javanmardi, Behnam
|b 16
773 _ _ |a 10.1038/s41598-025-20148-w
|g Vol. 15, no. 1, p. 32673
|0 PERI:(DE-600)2615211-3
|n 1
|p 32673
|t Scientific reports
|v 15
|y 2025
|x 2045-2322
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/281434/files/DZNE-2025-01119.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/281434/files/DZNE-2025-01119.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:281434
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001988
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 1 _ |0 I:(DE-2719)1040310
|k AG Reuter
|l Artificial Intelligence in Medicine
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1040310
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21