000281437 001__ 281437
000281437 005__ 20251102002040.0
000281437 0247_ $$2doi$$a10.1007/s15010-025-02576-y
000281437 0247_ $$2pmid$$apmid:40483626
000281437 0247_ $$2ISSN$$a0300-8126
000281437 0247_ $$2ISSN$$a1439-0973
000281437 0247_ $$2altmetric$$aaltmetric:177920810
000281437 037__ $$aDZNE-2025-01122
000281437 041__ $$aEnglish
000281437 082__ $$a610
000281437 1001_ $$aLorenzo-Diaz, Fabian$$b0
000281437 245__ $$aClostridioides difficile evolution in a tertiary German hospital through a retrospective genomic characterization.
000281437 260__ $$aMünchen$$bUrban & Vogel$$c2025
000281437 3367_ $$2DRIVER$$aarticle
000281437 3367_ $$2DataCite$$aOutput Types/Journal article
000281437 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1761730721_30627
000281437 3367_ $$2BibTeX$$aARTICLE
000281437 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281437 3367_ $$00$$2EndNote$$aJournal Article
000281437 520__ $$aClostridioides difficile is a major cause of healthcare-associated infections, contributing to significant morbidity and mortality. This study aimed to investigate the genomic characteristics, antimicrobial resistance (AMR) profiles, and temporal dynamics of C. difficile strains isolated from hospitalized patients in a German tertiary hospital over nearly two decades (1997-2015).Whole-genome sequencing was performed on 46 toxigenic C. difficile isolates to determine sequence types (STs) and phylogenetic relationships and these were compared to national surveillance data on C. dificile. AMR profiling was conducted to identify key resistance determinants at genetic level while epsilometer minimum inhibitory concentration (MIC) analyses were used to correlate genetic resistance markers with phenotypic resistance. Longitudinal antibiotic usage data were analysed to assess potential associations with resistance profiles and strains evolution.Five predominant STs were identified: ST1 (30%), ST54 (24%), ST3 (22%), ST11 (11%), and ST37 (4%). Phylogenetic analysis showed that ST1 (ribotype 027) emerged as the dominant and persistent lineage, replacing ST11 and ST54 over time. AMR profiling detected several resistance genetic markers such as CDD-1/CDD-2 (carbapenem resistance), ErmB (macrolide-lincosamide-streptogramin B resistance/MLS resistance), and mutations in gyrA (fluoroquinolone resistance) and rpoB (rifampicin resistance). MIC analyses confirmed high resistance rates to moxifloxacin (87%) and rifampicin (59%), while susceptibility to fidaxomicin, metronidazole, and vancomycin remained. The tetM gene, associated with doxycycline resistance, declined as ST11 and ST54 frequencies decreased. Longitudinal analysis revealed a reduction in moxifloxacin resistance following its decreased use, whereas increased doxycycline use paradoxically correlated with reduced resistance.This study highlights the dynamic strain evolution of C. difficile, reflecting national trends in strain evolution. The findings emphasize the strong correlation between epsilometer MIC values and molecular resistance markers. This observation reinforces the integration of genetic surveillance with antibiotic stewardship in the clinical routine to effectively mitigate CDI recurrence. Further research is needed to better understand the complex interactions between antibiotic exposure and strain evolution in hospital environments.
000281437 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000281437 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000281437 650_7 $$2Other$$aAntibiotic resistance genes
000281437 650_7 $$2Other$$aCDI
000281437 650_7 $$2Other$$aClostridioides difficile
000281437 650_7 $$2Other$$aPaLoc
000281437 650_7 $$2Other$$aWGS
000281437 650_7 $$2NLM Chemicals$$aAnti-Bacterial Agents
000281437 650_2 $$2MeSH$$aClostridioides difficile: genetics
000281437 650_2 $$2MeSH$$aClostridioides difficile: drug effects
000281437 650_2 $$2MeSH$$aClostridioides difficile: classification
000281437 650_2 $$2MeSH$$aClostridioides difficile: isolation & purification
000281437 650_2 $$2MeSH$$aTertiary Care Centers
000281437 650_2 $$2MeSH$$aHumans
000281437 650_2 $$2MeSH$$aGermany: epidemiology
000281437 650_2 $$2MeSH$$aClostridium Infections: microbiology
000281437 650_2 $$2MeSH$$aClostridium Infections: epidemiology
000281437 650_2 $$2MeSH$$aAnti-Bacterial Agents: pharmacology
000281437 650_2 $$2MeSH$$aRetrospective Studies
000281437 650_2 $$2MeSH$$aMicrobial Sensitivity Tests
000281437 650_2 $$2MeSH$$aPhylogeny
000281437 650_2 $$2MeSH$$aWhole Genome Sequencing
000281437 650_2 $$2MeSH$$aCross Infection: microbiology
000281437 650_2 $$2MeSH$$aCross Infection: epidemiology
000281437 650_2 $$2MeSH$$aDrug Resistance, Bacterial: genetics
000281437 650_2 $$2MeSH$$aEvolution, Molecular
000281437 650_2 $$2MeSH$$aGenome, Bacterial
000281437 650_2 $$2MeSH$$aMale
000281437 650_2 $$2MeSH$$aFemale
000281437 7001_ $$aKlassert, Tilman E$$b1
000281437 7001_ $$aZubiria-Barrera, Cristina$$b2
000281437 7001_ $$0P:(DE-2719)9003260$$aKeles, Amelya$$b3$$udzne
000281437 7001_ $$aGonzalez-Carracedo, Mario$$b4
000281437 7001_ $$aHernandez, Mariano$$b5
000281437 7001_ $$aSlevogt, Hortense$$b6
000281437 7001_ $$aGrünewald, Thomas$$b7
000281437 773__ $$0PERI:(DE-600)2006315-5$$a10.1007/s15010-025-02576-y$$gVol. 53, no. 5, p. 2209 - 2218$$n5$$p2209 - 2218$$tInfection$$v53$$x0300-8126$$y2025
000281437 8564_ $$uhttps://pub.dzne.de/record/281437/files/DZNE-2025-01122%20SUP.pdf
000281437 8564_ $$uhttps://pub.dzne.de/record/281437/files/DZNE-2025-01122.pdf$$yOpenAccess
000281437 8564_ $$uhttps://pub.dzne.de/record/281437/files/DZNE-2025-01122.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281437 8564_ $$uhttps://pub.dzne.de/record/281437/files/DZNE-2025-01122%20SUP.pdf?subformat=pdfa$$xpdfa
000281437 909CO $$ooai:pub.dzne.de:281437$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000281437 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9003260$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000281437 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000281437 9141_ $$y2025
000281437 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
000281437 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
000281437 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-16
000281437 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-16
000281437 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000281437 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281437 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINFECTION : 2022$$d2024-12-16
000281437 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-16
000281437 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-16$$wger
000281437 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
000281437 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
000281437 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINFECTION : 2022$$d2024-12-16
000281437 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
000281437 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-16
000281437 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
000281437 9201_ $$0I:(DE-2719)1810003$$kAG Prüß$$lAutoimmune Encephalopathies$$x0
000281437 980__ $$ajournal
000281437 980__ $$aVDB
000281437 980__ $$aUNRESTRICTED
000281437 980__ $$aI:(DE-2719)1810003
000281437 9801_ $$aFullTexts