001     281437
005     20251102002040.0
024 7 _ |a 10.1007/s15010-025-02576-y
|2 doi
024 7 _ |a pmid:40483626
|2 pmid
024 7 _ |a 0300-8126
|2 ISSN
024 7 _ |a 1439-0973
|2 ISSN
024 7 _ |a altmetric:177920810
|2 altmetric
037 _ _ |a DZNE-2025-01122
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Lorenzo-Diaz, Fabian
|b 0
245 _ _ |a Clostridioides difficile evolution in a tertiary German hospital through a retrospective genomic characterization.
260 _ _ |a München
|c 2025
|b Urban & Vogel
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1761730721_30627
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Clostridioides difficile is a major cause of healthcare-associated infections, contributing to significant morbidity and mortality. This study aimed to investigate the genomic characteristics, antimicrobial resistance (AMR) profiles, and temporal dynamics of C. difficile strains isolated from hospitalized patients in a German tertiary hospital over nearly two decades (1997-2015).Whole-genome sequencing was performed on 46 toxigenic C. difficile isolates to determine sequence types (STs) and phylogenetic relationships and these were compared to national surveillance data on C. dificile. AMR profiling was conducted to identify key resistance determinants at genetic level while epsilometer minimum inhibitory concentration (MIC) analyses were used to correlate genetic resistance markers with phenotypic resistance. Longitudinal antibiotic usage data were analysed to assess potential associations with resistance profiles and strains evolution.Five predominant STs were identified: ST1 (30%), ST54 (24%), ST3 (22%), ST11 (11%), and ST37 (4%). Phylogenetic analysis showed that ST1 (ribotype 027) emerged as the dominant and persistent lineage, replacing ST11 and ST54 over time. AMR profiling detected several resistance genetic markers such as CDD-1/CDD-2 (carbapenem resistance), ErmB (macrolide-lincosamide-streptogramin B resistance/MLS resistance), and mutations in gyrA (fluoroquinolone resistance) and rpoB (rifampicin resistance). MIC analyses confirmed high resistance rates to moxifloxacin (87%) and rifampicin (59%), while susceptibility to fidaxomicin, metronidazole, and vancomycin remained. The tetM gene, associated with doxycycline resistance, declined as ST11 and ST54 frequencies decreased. Longitudinal analysis revealed a reduction in moxifloxacin resistance following its decreased use, whereas increased doxycycline use paradoxically correlated with reduced resistance.This study highlights the dynamic strain evolution of C. difficile, reflecting national trends in strain evolution. The findings emphasize the strong correlation between epsilometer MIC values and molecular resistance markers. This observation reinforces the integration of genetic surveillance with antibiotic stewardship in the clinical routine to effectively mitigate CDI recurrence. Further research is needed to better understand the complex interactions between antibiotic exposure and strain evolution in hospital environments.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Antibiotic resistance genes
|2 Other
650 _ 7 |a CDI
|2 Other
650 _ 7 |a Clostridioides difficile
|2 Other
650 _ 7 |a PaLoc
|2 Other
650 _ 7 |a WGS
|2 Other
650 _ 7 |a Anti-Bacterial Agents
|2 NLM Chemicals
650 _ 2 |a Clostridioides difficile: genetics
|2 MeSH
650 _ 2 |a Clostridioides difficile: drug effects
|2 MeSH
650 _ 2 |a Clostridioides difficile: classification
|2 MeSH
650 _ 2 |a Clostridioides difficile: isolation & purification
|2 MeSH
650 _ 2 |a Tertiary Care Centers
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Germany: epidemiology
|2 MeSH
650 _ 2 |a Clostridium Infections: microbiology
|2 MeSH
650 _ 2 |a Clostridium Infections: epidemiology
|2 MeSH
650 _ 2 |a Anti-Bacterial Agents: pharmacology
|2 MeSH
650 _ 2 |a Retrospective Studies
|2 MeSH
650 _ 2 |a Microbial Sensitivity Tests
|2 MeSH
650 _ 2 |a Phylogeny
|2 MeSH
650 _ 2 |a Whole Genome Sequencing
|2 MeSH
650 _ 2 |a Cross Infection: microbiology
|2 MeSH
650 _ 2 |a Cross Infection: epidemiology
|2 MeSH
650 _ 2 |a Drug Resistance, Bacterial: genetics
|2 MeSH
650 _ 2 |a Evolution, Molecular
|2 MeSH
650 _ 2 |a Genome, Bacterial
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
700 1 _ |a Klassert, Tilman E
|b 1
700 1 _ |a Zubiria-Barrera, Cristina
|b 2
700 1 _ |a Keles, Amelya
|0 P:(DE-2719)9003260
|b 3
|u dzne
700 1 _ |a Gonzalez-Carracedo, Mario
|b 4
700 1 _ |a Hernandez, Mariano
|b 5
700 1 _ |a Slevogt, Hortense
|b 6
700 1 _ |a Grünewald, Thomas
|b 7
773 _ _ |a 10.1007/s15010-025-02576-y
|g Vol. 53, no. 5, p. 2209 - 2218
|0 PERI:(DE-600)2006315-5
|n 5
|p 2209 - 2218
|t Infection
|v 53
|y 2025
|x 0300-8126
856 4 _ |u https://pub.dzne.de/record/281437/files/DZNE-2025-01122%20SUP.pdf
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/281437/files/DZNE-2025-01122.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/281437/files/DZNE-2025-01122.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://pub.dzne.de/record/281437/files/DZNE-2025-01122%20SUP.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:281437
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9003260
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INFECTION : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-16
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INFECTION : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
920 1 _ |0 I:(DE-2719)1810003
|k AG Prüß
|l Autoimmune Encephalopathies
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1810003
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21