000281506 001__ 281506
000281506 005__ 20251102002046.0
000281506 0247_ $$2doi$$a10.3390/cells14181417
000281506 0247_ $$2pmid$$apmid:41002383
000281506 0247_ $$2pmc$$apmc:PMC12468769
000281506 0247_ $$2altmetric$$aaltmetric:182085818
000281506 037__ $$aDZNE-2025-01127
000281506 041__ $$aEnglish
000281506 082__ $$a570
000281506 1001_ $$0P:(DE-2719)9000981$$aDash, Banaja$$b0
000281506 245__ $$aTranscriptomic Alteration in FUS-ALS Points Towards Apoptosis-Rather than Ferroptosis-Related Cell Death Pathway.
000281506 260__ $$aBasel$$bMDPI$$c2025
000281506 3367_ $$2DRIVER$$aarticle
000281506 3367_ $$2DataCite$$aOutput Types/Journal article
000281506 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1761731256_30624
000281506 3367_ $$2BibTeX$$aARTICLE
000281506 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281506 3367_ $$00$$2EndNote$$aJournal Article
000281506 520__ $$aAmyotrophic lateral sclerosis (ALS) is a fatal type of neurodegenerative disease marked by progressive and selective degeneration of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. However, the intricate molecular mechanisms underlying primary cell death pathways, including ferroptosis-related genes (FRGs) mediating MN dysfunction in ALS, remain elusive. Ferroptosis, a novel type of iron-dependent cell death with the accumulation of lipid peroxidation products, stands distinct from apoptotic-related stress and other cell death mechanisms. Although growing advances have highlighted the role of iron deposition, apoptosis and alteration of antioxidant systems in ALS pathogenesis, there is little data at the systems biology level. Therefore, we performed a comprehensive bioinformatic analysis of bulk RNA-sequencing (RNA-seq) data by systematically comparing the gene expression profiles from iPSC-derived MNs of ALS patients and healthy controls using our datasets as well as from the GEO database to reveal the role of ferroptosis-related gene alterations in ALS, especially in selective MN vulnerability of FUSED IN SARCOMA (FUS) mutations. In this study, we first identified differentially expressed genes (DEGs) between FUS mutant and healthy controls. Subsequently, the crossover genes between DEGs and FRGs were selected as differentially expressed ferroptosis-related genes (DEFRGs). Functional enrichment and protein-protein interaction (PPI) analysis of DEFRGs identified that DNA damage, stress response and extra cellular matrix (ECM) were the most significantly dysregulated functions/pathways in FUS-ALS causing mutations compared to healthy controls. While GSEA analysis showed enrichment of genes associated with apoptosis, the degree of ferroptosis and iron ion homeostasis/response to iron of FUS MNs was lower. Altogether, our findings may contribute to a better understanding of the relevant role of cell death pathways underlying selective vulnerability of MNs to neurodegeneration in FUS-ALS pathophysiology.
000281506 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000281506 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000281506 650_7 $$2Other$$aALS
000281506 650_7 $$2Other$$aRNA-sequencing
000281506 650_7 $$2Other$$aapoptosis
000281506 650_7 $$2Other$$adifferentially expressed genes
000281506 650_7 $$2Other$$aferroptosis
000281506 650_7 $$2Other$$aferroptosis-related genes
000281506 650_7 $$2Other$$agene expression omnibus
000281506 650_7 $$2Other$$aiPSC
000281506 650_7 $$2Other$$amotor neuron
000281506 650_7 $$2NLM Chemicals$$aRNA-Binding Protein FUS
000281506 650_7 $$2NLM Chemicals$$aFUS protein, human
000281506 650_2 $$2MeSH$$aFerroptosis: genetics
000281506 650_2 $$2MeSH$$aHumans
000281506 650_2 $$2MeSH$$aAmyotrophic Lateral Sclerosis: genetics
000281506 650_2 $$2MeSH$$aAmyotrophic Lateral Sclerosis: pathology
000281506 650_2 $$2MeSH$$aApoptosis: genetics
000281506 650_2 $$2MeSH$$aRNA-Binding Protein FUS: genetics
000281506 650_2 $$2MeSH$$aRNA-Binding Protein FUS: metabolism
000281506 650_2 $$2MeSH$$aTranscriptome: genetics
000281506 650_2 $$2MeSH$$aMotor Neurons: metabolism
000281506 650_2 $$2MeSH$$aMotor Neurons: pathology
000281506 650_2 $$2MeSH$$aInduced Pluripotent Stem Cells: metabolism
000281506 650_2 $$2MeSH$$aGene Expression Profiling
000281506 7001_ $$0P:(DE-2719)2811732$$aHermann, Andreas$$b1$$eLast author
000281506 770__ $$aRecent Advances in Metabolism and Oxidative Stress in Human Diseases: 2nd Edition
000281506 773__ $$0PERI:(DE-600)2661518-6$$a10.3390/cells14181417$$gVol. 14, no. 18, p. 1417 -$$n18$$p1417$$tCells$$v14$$x2073-4409$$y2025
000281506 8564_ $$uhttps://pub.dzne.de/record/281506/files/DZNE-2025-01127%20SUP.zip
000281506 8564_ $$uhttps://pub.dzne.de/record/281506/files/DZNE-2025-01127.pdf$$yOpenAccess
000281506 8564_ $$uhttps://pub.dzne.de/record/281506/files/DZNE-2025-01127.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281506 909CO $$ooai:pub.dzne.de:281506$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000281506 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811732$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000281506 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000281506 9141_ $$y2025
000281506 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000281506 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06
000281506 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-06
000281506 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-06
000281506 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-06
000281506 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELLS-BASEL : 2022$$d2025-01-06
000281506 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-08-01T15:15:06Z
000281506 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-08-01T15:15:06Z
000281506 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06
000281506 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-06
000281506 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000281506 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281506 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-06
000281506 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-06
000281506 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELLS-BASEL : 2022$$d2025-01-06
000281506 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000281506 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000281506 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000281506 9201_ $$0I:(DE-2719)1511100$$kAG Hermann$$lTranslational Neurodegeneration$$x0
000281506 980__ $$ajournal
000281506 980__ $$aVDB
000281506 980__ $$aUNRESTRICTED
000281506 980__ $$aI:(DE-2719)1511100
000281506 9801_ $$aFullTexts