000281519 001__ 281519
000281519 005__ 20251029111228.0
000281519 0247_ $$2doi$$a10.1016/j.compbiomed.2025.111082
000281519 0247_ $$2pmid$$apmid:40997459
000281519 0247_ $$2ISSN$$a0010-4825
000281519 0247_ $$2ISSN$$a1879-0534
000281519 037__ $$aDZNE-2025-01137
000281519 041__ $$aEnglish
000281519 082__ $$a570
000281519 1001_ $$ade Oliveira Pires, L.$$b0
000281519 245__ $$aA computational model of tsDCS effects in SOD1 mice: from MRI-based design to validation.
000281519 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
000281519 3367_ $$2DRIVER$$aarticle
000281519 3367_ $$2DataCite$$aOutput Types/Journal article
000281519 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1761732556_30625
000281519 3367_ $$2BibTeX$$aARTICLE
000281519 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281519 3367_ $$00$$2EndNote$$aJournal Article
000281519 520__ $$aDuring trans-spinal direct current stimulation (tsDCS) the transmembrane potential of neurons is modified by an electric field (EF) induced due to externally applied direct current (DC). The resultant functional effects are being harnessed in the treatment of various neurological conditions; however, the fundamental mechanisms of action underlying tsDCS remain unclear. This ambiguity is largely attributed to the limited knowledge of the geometrical constraints of the EF in the polarized spinal regions. It is, then, essential to develop tools that enable researchers to plan tsDCS approaches in a controlled and systematic manner, ensuring the reproducibility of stimulation effects at spinal targets. With this paper, we aim to provide a comprehensive computational model of tsDCS intervention in mice to support further fundamental research in this area. Our model was constructed using high-resolution MRI scans of C57/B6 mice, which were segmented and reconstructed into a realistic mouse computational model. In vivo electrophysiological measurements of voltage gradients in SOD1 G93A mice were used to validate our model predictions in real-life scenarios. In both the modeling and in vivo studies, we employed a rostrocaudal arrangement of DC electrodes to replicate stimulation parameters that have proven effective for modulating murine spinal circuits. Both the computational and in vivo approaches yielded highly consistent results, with EF parameters primarily influenced by the distance between the target site and the tsDCS electrodes. We conclude that this developed model offers high accuracy in EF distribution and can significantly substantiate basic research in tsDCS.
000281519 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000281519 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000281519 650_7 $$2Other$$aAmyotrophic lateral sclerosis
000281519 650_7 $$2Other$$aIn vivo electrophysiology
000281519 650_7 $$2Other$$aMRI
000281519 650_7 $$2Other$$aNeuromodulation
000281519 650_7 $$2Other$$aSpinal computational model
000281519 650_7 $$0EC 1.15.1.1$$2NLM Chemicals$$aSuperoxide Dismutase-1
000281519 650_7 $$0EC 1.15.1.1$$2NLM Chemicals$$aSod1 protein, mouse
000281519 650_2 $$2MeSH$$aAnimals
000281519 650_2 $$2MeSH$$aMice
000281519 650_2 $$2MeSH$$aMagnetic Resonance Imaging
000281519 650_2 $$2MeSH$$aSuperoxide Dismutase-1: genetics
000281519 650_2 $$2MeSH$$aSuperoxide Dismutase-1: metabolism
000281519 650_2 $$2MeSH$$aModels, Neurological
000281519 650_2 $$2MeSH$$aSpinal Cord: diagnostic imaging
000281519 650_2 $$2MeSH$$aSpinal Cord: physiology
000281519 650_2 $$2MeSH$$aComputer Simulation
000281519 650_2 $$2MeSH$$aMice, Inbred C57BL
000281519 650_2 $$2MeSH$$aMice, Transgenic
000281519 650_2 $$2MeSH$$aMembrane Potentials: physiology
000281519 7001_ $$aWasicki, B.$$b1
000281519 7001_ $$aAbaei, A.$$b2
000281519 7001_ $$0P:(DE-2719)9001282$$aScekic-Zahirovic, J.$$b3$$udzne
000281519 7001_ $$0P:(DE-2719)2812851$$aRoselli, F.$$b4$$udzne
000281519 7001_ $$aFernandes, S.$$b5
000281519 7001_ $$aBączyk, M.$$b6
000281519 773__ $$0PERI:(DE-600)1496984-1$$a10.1016/j.compbiomed.2025.111082$$gVol. 197, no. Pt B, p. 111082 -$$nPt B$$p111082$$tComputers in biology and medicine$$v197$$x0010-4825$$y2025
000281519 8564_ $$uhttps://pub.dzne.de/record/281519/files/DZNE-2025-01137.pdf$$yOpenAccess
000281519 8564_ $$uhttps://pub.dzne.de/record/281519/files/DZNE-2025-01137.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281519 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001282$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000281519 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812851$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000281519 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000281519 9141_ $$y2025
000281519 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000281519 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
000281519 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-18
000281519 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-18
000281519 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
000281519 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT BIOL MED : 2022$$d2024-12-18
000281519 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-18
000281519 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
000281519 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000281519 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281519 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
000281519 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMPUT BIOL MED : 2022$$d2024-12-18
000281519 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000281519 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000281519 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-18$$wger
000281519 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000281519 9201_ $$0I:(DE-2719)1910001$$kAG Roselli$$lMetabolic Changes in Neurodegeneration$$x0
000281519 980__ $$ajournal
000281519 980__ $$aVDB
000281519 980__ $$aUNRESTRICTED
000281519 980__ $$aI:(DE-2719)1910001
000281519 9801_ $$aFullTexts