001     281523
005     20251030102703.0
024 7 _ |a 10.1038/s41467-025-64501-z
|2 doi
024 7 _ |a pmid:41038884
|2 pmid
024 7 _ |a pmc:PMC12491457
|2 pmc
037 _ _ |a DZNE-2025-01141
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Distler, Ute
|0 0000-0002-8031-6384
|b 0
245 _ _ |a Multicenter evaluation of label-free quantification in human plasma on a high dynamic range benchmark set.
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1761739342_30624
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Human plasma is routinely collected during clinical care and constitutes a rich source of biomarkers for diagnostics and patient stratification. Liquid chromatography-mass spectrometry (LC-MS)-based proteomics is a key method for plasma biomarker discovery, but the high dynamic range of plasma proteins poses significant challenges for MS analysis and data processing. To benchmark the quantitative performance of neat plasma analysis, we introduce a multispecies sample set based on a human tryptic plasma digest containing varying low level spike-ins of yeast and E. coli tryptic proteome digests, termed PYE. By analysing the sample set on state-of-the-art LC-MS platforms across twelve different sites in data-dependent (DDA) and data-independent acquisition (DIA) modes, we provide a data resource comprising a total of 1116 individual LC-MS runs. Centralized data analysis shows that DIA methods outperform DDA-based approaches regarding identifications, data completeness, accuracy, and precision. DIA achieves excellent technical reproducibility, as demonstrated by coefficients of variation (CVs) between 3.3% and 9.8% at protein level. Comparative analysis of different setups clearly shows a high overlap in identified proteins and proves that accurate and precise quantitative measurements are feasible across multiple sites, even in a complex matrix such as plasma, using state-of-the-art instrumentation. The collected dataset, including the PYE sample set and strategy presented, serves as a valuable resource for optimizing the accuracy and reproducibility of LC-MS and bioinformatic workflows for clinical plasma proteome analysis.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Blood Proteins
|2 NLM Chemicals
650 _ 7 |a Proteome
|2 NLM Chemicals
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Proteomics: methods
|2 MeSH
650 _ 2 |a Chromatography, Liquid: methods
|2 MeSH
650 _ 2 |a Blood Proteins: analysis
|2 MeSH
650 _ 2 |a Blood Proteins: metabolism
|2 MeSH
650 _ 2 |a Proteome: analysis
|2 MeSH
650 _ 2 |a Benchmarking
|2 MeSH
650 _ 2 |a Reproducibility of Results
|2 MeSH
650 _ 2 |a Mass Spectrometry: methods
|2 MeSH
650 _ 2 |a Biomarkers: blood
|2 MeSH
650 _ 2 |a Escherichia coli: metabolism
|2 MeSH
650 _ 2 |a Plasma: chemistry
|2 MeSH
700 1 _ |a Yoo, Han Byul
|b 1
700 1 _ |a Kardell, Oliver
|b 2
700 1 _ |a Hein, Dana
|b 3
700 1 _ |a Sielaff, Malte
|b 4
700 1 _ |a Scherer, Marian
|b 5
700 1 _ |a Jozefowicz, Anna M
|b 6
700 1 _ |a Leps, Christian
|b 7
700 1 _ |a Gomez-Zepeda, David
|0 0000-0002-9467-1213
|b 8
700 1 _ |a von Toerne, Christine
|0 0000-0002-4132-4322
|b 9
700 1 _ |a Merl-Pham, Juliane
|0 0000-0002-3422-4083
|b 10
700 1 _ |a Barth, Teresa K
|b 11
700 1 _ |a Tüshaus, Johanna
|0 P:(DE-2719)2812852
|b 12
700 1 _ |a Giesbertz, Pieter
|0 P:(DE-2719)9001718
|b 13
700 1 _ |a Müller, Torsten
|b 14
700 1 _ |a Kliewer, Georg
|b 15
700 1 _ |a Aljakouch, Karim
|b 16
700 1 _ |a Helm, Barbara
|b 17
700 1 _ |a Unger, Henry
|0 0009-0001-1798-4347
|b 18
700 1 _ |a Frey, Dario L
|0 0000-0001-9572-9686
|b 19
700 1 _ |a Helm, Dominic
|0 0000-0001-9321-2069
|b 20
700 1 _ |a Schwarzmüller, Luisa
|0 0000-0002-7151-9913
|b 21
700 1 _ |a Popp, Oliver
|b 22
700 1 _ |a Qin, Di
|b 23
700 1 _ |a Wudy, Susanne I
|0 0009-0001-6333-5233
|b 24
700 1 _ |a Sinn, Ludwig Roman
|0 0000-0003-4692-0681
|b 25
700 1 _ |a Mergner, Julia
|0 0000-0002-4332-1280
|b 26
700 1 _ |a Ludwig, Christina
|0 0000-0002-6131-7322
|b 27
700 1 _ |a Imhof, Axel
|0 0000-0003-2993-8249
|b 28
700 1 _ |a Kuster, Bernhard
|0 0000-0002-9094-1677
|b 29
700 1 _ |a Lichtenthaler, Stefan F
|0 P:(DE-2719)2181459
|b 30
700 1 _ |a Krijgsveld, Jeroen
|b 31
700 1 _ |a Klingmüller, Ursula
|b 32
700 1 _ |a Mertins, Philipp
|0 0000-0002-2245-528X
|b 33
700 1 _ |a Coscia, Fabian
|0 0000-0002-2244-5081
|b 34
700 1 _ |a Ralser, Markus
|0 0000-0001-9535-7413
|b 35
700 1 _ |a Mülleder, Michael
|0 0000-0001-9792-3861
|b 36
700 1 _ |a Hauck, Stefanie M
|0 0000-0002-1630-6827
|b 37
700 1 _ |a Tenzer, Stefan
|0 0000-0003-3034-0017
|b 38
773 _ _ |a 10.1038/s41467-025-64501-z
|g Vol. 16, no. 1, p. 8774
|0 PERI:(DE-600)2553671-0
|n 1
|p 8774
|t Nature Communications
|v 16
|y 2025
|x 2041-1723
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/281523/files/DZNE-2025-01141%20SUP1.pdf
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/281523/files/DZNE-2025-01141.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/281523/files/DZNE-2025-01141.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/281523/files/DZNE-2025-01141%20SUP1.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:281523
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)9001718
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 30
|6 P:(DE-2719)2181459
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
920 1 _ |0 I:(DE-2719)1110006
|k AG Lichtenthaler
|l Neuroproteomics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1110006
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21