000281528 001__ 281528
000281528 005__ 20251102002100.0
000281528 0247_ $$2doi$$a10.2967/jnumed.125.270115
000281528 0247_ $$2pmid$$apmid:40935608
000281528 0247_ $$2ISSN$$a0097-9058
000281528 0247_ $$2ISSN$$a0022-3123
000281528 0247_ $$2ISSN$$a0161-5505
000281528 0247_ $$2ISSN$$a1535-5667
000281528 0247_ $$2ISSN$$a2159-662X
000281528 0247_ $$2altmetric$$aaltmetric:181362085
000281528 037__ $$aDZNE-2025-01146
000281528 041__ $$aEnglish
000281528 082__ $$a610
000281528 1001_ $$aEbner, Ricarda$$b0
000281528 245__ $$aRetrospective Evaluation of the Correlation Between Somatostatin Receptor PET/CT and Histopathology in Patients with Suspected Intracranial Meningiomas.
000281528 260__ $$aNew York, NY$$bSoc.$$c2025
000281528 3367_ $$2DRIVER$$aarticle
000281528 3367_ $$2DataCite$$aOutput Types/Journal article
000281528 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1761740421_30624
000281528 3367_ $$2BibTeX$$aARTICLE
000281528 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281528 3367_ $$00$$2EndNote$$aJournal Article
000281528 520__ $$aThe aim of this retrospective study was to evaluate the correlation between findings from somatostatin receptor (SSTR) PET/CT and histopathology in patients with suspected intracranial meningiomas. Methods: We conducted a retrospective analysis of 8,077 SSTR imaging studies recorded in our institutional database between 2006 and 2021. In total, 223 SSTR PET/CT scans were performed for suspected meningioma, and 240 lesions were matched with histopathology results within 4 mo. Reports from SSTR PET/CT scans and histopathology were retrospectively reviewed to assess the presence of intracranial meningiomas. The positive and negative predictive values, sensitivity, specificity, and overall diagnostic accuracy of SSTR PET/CT were calculated. The SUVmax, SUVmean, and SUVpeak were determined for each lesion. Results: In 222 (92.5%) of 240 lesions, meningioma was accurately identified by SSTR PET/CT and confirmed by histopathology. In 7 cases (2.9%), SSTR PET/CT suspected meningioma was not confirmed by histopathology (false-positive). Furthermore, in 11 cases (5%), meningioma was neither suspected by SSTR PET/CT nor confirmed by histopathology (true-negative result). There were no false-negative findings in our cohort. SSTR PET/CT demonstrated a sensitivity of 100% (95% CI, 98.4%-100%) and a specificity of 61.1% (95% CI, 35.8%-82.7%) in detecting meningiomas. Positive predictive value was 96.9% (95% CI, 93.8%-98.8%), and negative predictive value was 100% (95% CI, 71.5%-100%). The overall diagnostic accuracy was 97.1%. The receiver-operating-characteristic analysis for SUVmax in predicting histopathology results showed an area under the curve of 94%, indicating an excellent ability of SUVmax to distinguish between positive and negative histopathologic findings. Conclusion: SSTR PET/CT is a precise imaging modality for detecting intracranial meningiomas, as demonstrated by its high sensitivity. However, in 2.9% of cases, despite a positive PET/CT result, histopathology did not confirm the presence of a meningioma. Integration of MRI, histopathology, and SSTR PET/CT supports informed treatment decisions.
000281528 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000281528 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000281528 650_7 $$2Other$$aPET
000281528 650_7 $$2Other$$ahistopathology
000281528 650_7 $$2Other$$amagnetic resonance imaging
000281528 650_7 $$2Other$$ameningioma
000281528 650_7 $$2Other$$asomatostatin receptor
000281528 650_7 $$2NLM Chemicals$$aReceptors, Somatostatin
000281528 650_2 $$2MeSH$$aHumans
000281528 650_2 $$2MeSH$$aMeningioma: diagnostic imaging
000281528 650_2 $$2MeSH$$aMeningioma: pathology
000281528 650_2 $$2MeSH$$aMeningioma: metabolism
000281528 650_2 $$2MeSH$$aReceptors, Somatostatin: metabolism
000281528 650_2 $$2MeSH$$aPositron Emission Tomography Computed Tomography
000281528 650_2 $$2MeSH$$aRetrospective Studies
000281528 650_2 $$2MeSH$$aFemale
000281528 650_2 $$2MeSH$$aMale
000281528 650_2 $$2MeSH$$aMiddle Aged
000281528 650_2 $$2MeSH$$aAged
000281528 650_2 $$2MeSH$$aAdult
000281528 650_2 $$2MeSH$$aMeningeal Neoplasms: diagnostic imaging
000281528 650_2 $$2MeSH$$aMeningeal Neoplasms: pathology
000281528 650_2 $$2MeSH$$aMeningeal Neoplasms: metabolism
000281528 650_2 $$2MeSH$$aSensitivity and Specificity
000281528 650_2 $$2MeSH$$aAged, 80 and over
000281528 650_2 $$2MeSH$$aYoung Adult
000281528 7001_ $$aBraach, Jana$$b1
000281528 7001_ $$aRübenthaler, Johannes$$b2
000281528 7001_ $$aCyran, Clemens C$$b3
000281528 7001_ $$aSheikh, Gabriel T$$b4
000281528 7001_ $$0P:(DE-2719)9001539$$aBrendel, Matthias$$b5$$udzne
000281528 7001_ $$aAlbert, Nathalie L$$b6
000281528 7001_ $$aTiling, Reinhold$$b7
000281528 7001_ $$aGreve, Tobias$$b8
000281528 7001_ $$aHinterberger, Anna$$b9
000281528 7001_ $$aFabritius, Matthias P$$b10
000281528 7001_ $$aFink, Nicola$$b11
000281528 7001_ $$aRicke, Jens$$b12
000281528 7001_ $$aWerner, Rudolf A$$b13
000281528 7001_ $$aGrawe, Freba$$b14
000281528 773__ $$0PERI:(DE-600)2040222-3$$a10.2967/jnumed.125.270115$$gVol. 66, no. 10, p. 1561 - 1567$$n10$$p1561 - 1567$$tJournal of nuclear medicine$$v66$$x0097-9058$$y2025
000281528 909CO $$ooai:pub.dzne.de:281528$$pVDB
000281528 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001539$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000281528 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000281528 9141_ $$y2025
000281528 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NUCL MED : 2022$$d2025-01-01
000281528 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
000281528 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
000281528 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
000281528 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-01
000281528 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
000281528 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-01
000281528 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-01
000281528 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-01
000281528 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
000281528 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
000281528 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NUCL MED : 2022$$d2025-01-01
000281528 9201_ $$0I:(DE-2719)1110007$$kAG Haass$$lMolecular Neurodegeneration$$x0
000281528 980__ $$ajournal
000281528 980__ $$aVDB
000281528 980__ $$aI:(DE-2719)1110007
000281528 980__ $$aUNRESTRICTED