001     281787
005     20251113102917.0
024 7 _ |a 10.1038/s41594-025-01616-3
|2 doi
024 7 _ |a pmid:40646310
|2 pmid
024 7 _ |a pmc:PMC12527931
|2 pmc
024 7 _ |a 1545-9993
|2 ISSN
024 7 _ |a 1072-8368
|2 ISSN
024 7 _ |a 1545-9985
|2 ISSN
024 7 _ |a 2331-365X
|2 ISSN
037 _ _ |a DZNE-2025-01180
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Rodschinka, Geraldine
|b 0
245 _ _ |a Comparative CRISPRi screens reveal a human stem cell dependence on mRNA translation-coupled quality control.
260 _ _ |a London [u.a.]
|c 2025
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1762941661_29014
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The translation of mRNA into proteins in multicellular organisms needs to be carefully tuned to changing proteome demands in development and differentiation, while defects in translation often have a disproportionate impact in distinct cell types. Here we used inducible CRISPR interference screens to compare the essentiality of genes with functions in mRNA translation in human induced pluripotent stem cells (hiPS cells) and hiPS cell-derived neural and cardiac cells. We find that core components of the mRNA translation machinery are broadly essential but the consequences of perturbing translation-coupled quality control factors are cell type dependent. Human stem cells critically depend on pathways that detect and rescue slow or stalled ribosomes and on the E3 ligase ZNF598 to resolve a distinct type of ribosome collision at translation start sites on endogenous mRNAs with highly efficient initiation. Our findings underscore the importance of cell identity for deciphering the molecular mechanisms of translational control in metazoans.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a RNA, Messenger
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a RNA, Messenger: genetics
|2 MeSH
650 _ 2 |a RNA, Messenger: metabolism
|2 MeSH
650 _ 2 |a Protein Biosynthesis
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: cytology
|2 MeSH
650 _ 2 |a CRISPR-Cas Systems
|2 MeSH
650 _ 2 |a Ribosomes: metabolism
|2 MeSH
650 _ 2 |a Cell Differentiation
|2 MeSH
650 _ 2 |a Myocytes, Cardiac: metabolism
|2 MeSH
650 _ 2 |a Myocytes, Cardiac: cytology
|2 MeSH
700 1 _ |a Forcelloni, Sergio
|b 1
700 1 _ |a Kühner, Felix M
|b 2
700 1 _ |a Wani, Sascha
|b 3
700 1 _ |a Riemenschneider, Henrick
|0 P:(DE-2719)2812261
|b 4
|u dzne
700 1 _ |a Edbauer, Dieter
|0 P:(DE-2719)2231621
|b 5
|u dzne
700 1 _ |a Behrens, Andrew
|b 6
700 1 _ |a Nedialkova, Danny D
|0 0000-0001-8598-6021
|b 7
773 _ _ |a 10.1038/s41594-025-01616-3
|g Vol. 32, no. 10, p. 1932 - 1946
|0 PERI:(DE-600)2131437-8
|n 10
|p 1932 - 1946
|t Nature structural & molecular biology
|v 32
|y 2025
|x 1545-9993
856 4 _ |u https://pub.dzne.de/record/281787/files/DZNE-2025-01180%20SUP%2BSRC.zip
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/281787/files/DZNE-2025-01180.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/281787/files/DZNE-2025-01180.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:281787
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2812261
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2231621
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT STRUCT MOL BIOL : 2022
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT STRUCT MOL BIOL : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
920 1 _ |0 I:(DE-2719)1110004
|k AG Edbauer
|l Cell Biology of Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1110004
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21