000281829 001__ 281829
000281829 005__ 20251113125814.0
000281829 0247_ $$2doi$$a10.1038/s41746-025-01996-2
000281829 0247_ $$2pmid$$apmid:41145883
000281829 037__ $$aDZNE-2025-01210
000281829 041__ $$aEnglish
000281829 082__ $$a610
000281829 1001_ $$aJarchow, Hans$$b0
000281829 245__ $$aBenchmarking large language models for personalized, biomarker-based health intervention recommendations.
000281829 260__ $$a[Basingstoke]$$bMacmillan Publishers Limited$$c2025
000281829 3367_ $$2DRIVER$$aarticle
000281829 3367_ $$2DataCite$$aOutput Types/Journal article
000281829 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1763034905_32671
000281829 3367_ $$2BibTeX$$aARTICLE
000281829 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281829 3367_ $$00$$2EndNote$$aJournal Article
000281829 520__ $$aThe use of large language models (LLMs) in clinical diagnostics and intervention planning is expanding, yet their utility for personalized recommendations for longevity interventions remains opaque. We extended the BioChatter framework to benchmark LLMs' ability to generate personalized longevity intervention recommendations based on biomarker profiles while adhering to key medical validation requirements. Using 25 individual profiles across three different age groups, we generated 1000 diverse test cases covering interventions such as caloric restriction, fasting and supplements. Evaluating 56000 model responses via an LLM-as-a-Judge system with clinician validated ground truths, we found that proprietary models outperformed open-source models especially in comprehensiveness. However, even with Retrieval-Augmented Generation (RAG), all models exhibited limitations in addressing key medical validation requirements, prompt stability, and handling age-related biases. Our findings highlight limited suitability of LLMs for unsupervised longevity intervention recommendations. Our open-source framework offers a foundation for advancing AI benchmarking in various medical contexts.
000281829 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000281829 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000281829 7001_ $$aBobrowski, Christoph$$b1
000281829 7001_ $$aFalk, Steffi$$b2
000281829 7001_ $$0P:(DE-2719)2811732$$aHermann, Andreas$$b3$$udzne
000281829 7001_ $$aKulaga, Anton$$b4
000281829 7001_ $$aPõder, Johann-Christian$$b5
000281829 7001_ $$aUnfried, Maximilian$$b6
000281829 7001_ $$aUsanov, Nikolay$$b7
000281829 7001_ $$aZendeh, Bijan$$b8
000281829 7001_ $$aKennedy, Brian K$$b9
000281829 7001_ $$aLobentanzer, Sebastian$$b10
000281829 7001_ $$aFuellen, Georg$$b11
000281829 773__ $$0PERI:(DE-600)2925182-5$$a10.1038/s41746-025-01996-2$$gVol. 8, no. 1, p. 631$$n1$$p631$$tnpj digital medicine$$v8$$x2398-6352$$y2025
000281829 8564_ $$uhttps://pub.dzne.de/record/281829/files/DZNE-2025-01210%20SUP.pdf
000281829 8564_ $$uhttps://pub.dzne.de/record/281829/files/DZNE-2025-01210.pdf$$yOpenAccess
000281829 8564_ $$uhttps://pub.dzne.de/record/281829/files/DZNE-2025-01210%20SUP.pdf?subformat=pdfa$$xpdfa
000281829 8564_ $$uhttps://pub.dzne.de/record/281829/files/DZNE-2025-01210.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281829 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811732$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000281829 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000281829 9141_ $$y2025
000281829 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
000281829 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
000281829 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000281829 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNPJ DIGIT MED : 2022$$d2025-01-01
000281829 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNPJ DIGIT MED : 2022$$d2025-01-01
000281829 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:42:56Z
000281829 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:42:56Z
000281829 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
000281829 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-01
000281829 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
000281829 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281829 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:42:56Z
000281829 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-01
000281829 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
000281829 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-01
000281829 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
000281829 9201_ $$0I:(DE-2719)1511100$$kAG Hermann$$lTranslational Neurodegeneration$$x0
000281829 980__ $$ajournal
000281829 980__ $$aVDB
000281829 980__ $$aUNRESTRICTED
000281829 980__ $$aI:(DE-2719)1511100
000281829 9801_ $$aFullTexts