000281873 001__ 281873
000281873 005__ 20251127142829.0
000281873 0247_ $$2doi$$a10.1111/jon.70098
000281873 0247_ $$2pmid$$apmid:41199481
000281873 0247_ $$2pmc$$apmc:PMC12592781
000281873 0247_ $$2ISSN$$a1051-2284
000281873 0247_ $$2ISSN$$a1552-6569
000281873 037__ $$aDZNE-2025-01244
000281873 041__ $$aEnglish
000281873 082__ $$a610
000281873 1001_ $$00000-0002-9974-4557$$aTeckentrup, Vanessa$$b0
000281873 245__ $$aAssessing a Stimulator Modification for Simultaneous Noninvasive Auricular Vagus Nerve Stimulation and MRI.
000281873 260__ $$aBerlin [u.a.]$$bWiley-Blackwell$$c2025
000281873 3367_ $$2DRIVER$$aarticle
000281873 3367_ $$2DataCite$$aOutput Types/Journal article
000281873 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1764250005_8030$$xReview Article
000281873 3367_ $$2BibTeX$$aARTICLE
000281873 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281873 3367_ $$00$$2EndNote$$aJournal Article
000281873 520__ $$aThe vagus nerve can be stimulated noninvasively at the ear using transcutaneous auricular vagus nerve stimulation (taVNS). Concurrent functional MRI (fMRI) permits study of taVNS-induced changes in brain dynamics, a key requisite for precision neurostimulation. However, there is no standardized protocol for how to safely apply taVNS during MRI. One major risk is temperature increase exceeding innocuous thresholds due to coupling of the emitted radio frequency (RF) pulse during imaging. Thus, we developed and tested a stimulator cable configuration with floating ground cable traps and filter plate connectors.We measured temperature, resonance of the stimulation electrodes, and current interference using unmodified and modified stimulation cables. Measurements were conducted across three sites using different 3T MRI scanner models, stimulators, and stimulation strengths with phantoms and human participants.The modified compared to the unmodified cable considerably reduced RF heating as the relative temperature increase stayed well below the 2 K threshold specified by the ASTM F2182 standard. Additionally, in accordance with ASTM 2119, we can rule out potential distortion and signal loss around the electrodes due to current flow from the stimulator and demonstrate that impaired image quality in brainstem and midbrain regions is recovered using the modified cable.We show that adding floating ground cable traps to the stimulator cable allows the safe use of taVNS with fMRI and may improve image quality in functional imaging. To enable other researchers to modify their hardware in the same way, we provide details of the modifications.
000281873 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000281873 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000281873 650_7 $$2Other$$aMRI
000281873 650_7 $$2Other$$aRF
000281873 650_7 $$2Other$$aelectrical stimulation
000281873 650_7 $$2Other$$aneuroimaging
000281873 650_7 $$2Other$$ataVNS
000281873 650_7 $$2Other$$atemperature
000281873 650_7 $$2Other$$avagus nerve
000281873 650_2 $$2MeSH$$aHumans
000281873 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods
000281873 650_2 $$2MeSH$$aMagnetic Resonance Imaging: instrumentation
000281873 650_2 $$2MeSH$$aVagus Nerve Stimulation: instrumentation
000281873 650_2 $$2MeSH$$aVagus Nerve Stimulation: methods
000281873 650_2 $$2MeSH$$aEquipment Design
000281873 650_2 $$2MeSH$$aPhantoms, Imaging
000281873 650_2 $$2MeSH$$aMale
000281873 650_2 $$2MeSH$$aFemale
000281873 650_2 $$2MeSH$$aAdult
000281873 650_2 $$2MeSH$$aVagus Nerve: physiology
000281873 650_2 $$2MeSH$$aTranscutaneous Electric Nerve Stimulation: instrumentation
000281873 650_2 $$2MeSH$$aBrain: physiology
000281873 650_2 $$2MeSH$$aBrain: diagnostic imaging
000281873 7001_ $$0P:(DE-2719)9002575$$aLudwig, Mareike$$b1$$udzne
000281873 7001_ $$aSeibt, Janis$$b2
000281873 7001_ $$aHartig, Renée$$b3
000281873 7001_ $$aPreissl, Hubert$$b4
000281873 7001_ $$aSchuppert, Mark$$b5
000281873 7001_ $$aAvdievich, Nikolai I$$b6
000281873 7001_ $$aScheffler, Klaus$$b7
000281873 7001_ $$aPriovoulos, Nikos$$b8
000281873 7001_ $$aEhses, Maik$$b9
000281873 7001_ $$aPoser, Benedikt A$$b10
000281873 7001_ $$aWiggins, Christopher J$$b11
000281873 7001_ $$aTrautner, Peter$$b12
000281873 7001_ $$aHonerbach, Walter$$b13
000281873 7001_ $$aJacobs, Heidi I L$$b14
000281873 7001_ $$0P:(DE-2719)2810706$$aSpeck, Oliver$$b15$$udzne
000281873 7001_ $$0P:(DE-2719)2811927$$aHämmerer, Dorothea$$b16$$udzne
000281873 7001_ $$aKroemer, Nils B$$b17
000281873 773__ $$0PERI:(DE-600)2035400-9$$a10.1111/jon.70098$$gVol. 35, no. 6, p. e70098$$n6$$pe70098$$tJournal of neuroimaging$$v35$$x1051-2284$$y2025
000281873 8564_ $$uhttps://pub.dzne.de/record/281873/files/DZNE-2025-01244.pdf$$yOpenAccess
000281873 8564_ $$uhttps://pub.dzne.de/record/281873/files/DZNE-2025-01244.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281873 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002575$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000281873 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)2810706$$aExternal Institute$$b15$$kExtern
000281873 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811927$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b16$$kDZNE
000281873 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000281873 9141_ $$y2025
000281873 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
000281873 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
000281873 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-09
000281873 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROIMAGING : 2022$$d2024-12-09
000281873 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000281873 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-09$$wger
000281873 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
000281873 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
000281873 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
000281873 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281873 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-09
000281873 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
000281873 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-09
000281873 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
000281873 9201_ $$0I:(DE-2719)1310003$$kAG Müller$$lNeuroprotection$$x0
000281873 9201_ $$0I:(DE-2719)5000006$$kAG Düzel$$lClinical Neurophysiology and Memory$$x1
000281873 980__ $$ajournal
000281873 980__ $$aVDB
000281873 980__ $$aUNRESTRICTED
000281873 980__ $$aI:(DE-2719)1310003
000281873 980__ $$aI:(DE-2719)5000006
000281873 9801_ $$aFullTexts