000281911 001__ 281911
000281911 005__ 20251112102900.0
000281911 0247_ $$2doi$$a10.1038/s41467-025-66122-y
000281911 037__ $$aDZNE-2025-01253
000281911 041__ $$aEnglish
000281911 082__ $$a500
000281911 1001_ $$0P:(DE-2719)9001992$$aFavila, Natalia$$b0$$eFirst author
000281911 245__ $$aHeterogeneous plasticity of amygdala interneurons in associative learning and extinction
000281911 260__ $$a[London]$$bSpringer Nature$$c2025
000281911 3367_ $$2DRIVER$$aarticle
000281911 3367_ $$2DataCite$$aOutput Types/Journal article
000281911 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1762939043_29017
000281911 3367_ $$2BibTeX$$aARTICLE
000281911 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281911 3367_ $$00$$2EndNote$$aJournal Article
000281911 520__ $$aNeural circuits undergo experience-dependent plasticity to form long-lasting memories, but how inhibitory interneurons contribute to this process remains poorly understood. Using miniature microscope calcium imaging, we monitored the activity of large amygdala interneuron populations in freely moving mice during fear learning and extinction. Here we show that interneurons exhibit complex and heterogeneous plasticity at both single-cell and ensemble levels across memory acquisition, expression, and extinction. Analysis of molecular interneuron subpopulations revealed that disinhibitory vasoactive intestinal peptide (VIP)-expressing cells are predominantly activated by salient external stimuli, whereas the activity of projection neuron targeting somatostatin (SST) interneurons additionally aligns with internal behavioural states. Although responses within each interneuron subtype are non-uniform, molecular identity biases their functional role, producing weighted circuit outputs that can flexibly regulate excitatory projection neuron activity and plasticity. These findings demonstrate that inhibitory interneurons actively shape the encoding and stability of emotional memories, underscoring their importance in adaptive learning.
000281911 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000281911 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000281911 7001_ $$0P:(DE-2719)9001352$$aCapece Marsico, Jessica$$b1$$eFirst author
000281911 7001_ $$0P:(DE-2719)9001811$$aPacheco, Catarina M.$$b2
000281911 7001_ $$0P:(DE-2719)9003527$$aKenet, Selin$$b3$$udzne
000281911 7001_ $$0P:(DE-2719)9002151$$aEscribano, Benjamin$$b4
000281911 7001_ $$aBitterman, Yael$$b5
000281911 7001_ $$0P:(DE-2719)9001219$$aGründemann, Jan$$b6
000281911 7001_ $$00000-0002-1859-4252$$aLüthi, Andreas$$b7
000281911 7001_ $$0P:(DE-2719)9001056$$aKrabbe, Sabine$$b8$$eLast author
000281911 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-025-66122-y$$gVol. 16, no. 1, p. 9926$$n1$$p9926$$tNature Communications$$v16$$x2041-1723$$y2025
000281911 7870_ $$0DZNE-2024-01196$$aFavila, Natalia et.al.$$dCold Spring Harbor : Cold Spring Harbor Laboratory, NY, 2024$$iIsParent$$r$$tHeterogeneous plasticity of amygdala interneurons in associative learning and extinction
000281911 8564_ $$uhttps://pub.dzne.de/record/281911/files/DZNE-2025-01253.pdf$$yOpenAccess
000281911 8564_ $$uhttps://pub.dzne.de/record/281911/files/DZNE-2025-01253.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281911 909CO $$ooai:pub.dzne.de:281911$$popenaire$$pVDB
000281911 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001992$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000281911 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001352$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000281911 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001811$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000281911 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9003527$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000281911 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002151$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000281911 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001219$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000281911 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001056$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000281911 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000281911 9141_ $$y2025
000281911 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281911 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000281911 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02
000281911 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000281911 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000281911 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z
000281911 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z
000281911 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z
000281911 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-01-30T07:48:07Z
000281911 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000281911 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02
000281911 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02
000281911 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
000281911 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000281911 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000281911 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000281911 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
000281911 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000281911 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000281911 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02
000281911 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
000281911 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
000281911 9201_ $$0I:(DE-2719)5000059$$kAG Krabbe$$lFunctional Diversity of Neural Circuits$$x0
000281911 9201_ $$0I:(DE-2719)5000069$$kAG Gründemann$$lNeural Circuit Computations$$x1
000281911 980__ $$ajournal
000281911 980__ $$aVDB
000281911 980__ $$aI:(DE-2719)5000059
000281911 980__ $$aI:(DE-2719)5000069
000281911 980__ $$aUNRESTRICTED
000281911 9801_ $$aFullTexts