| Home > Publications Database > Heterogeneous plasticity of amygdala interneurons in associative learning and extinction > print |
| 001 | 281911 | ||
| 005 | 20251112102900.0 | ||
| 024 | 7 | _ | |a 10.1038/s41467-025-66122-y |2 doi |
| 037 | _ | _ | |a DZNE-2025-01253 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 500 |
| 100 | 1 | _ | |a Favila, Natalia |0 P:(DE-2719)9001992 |b 0 |e First author |
| 245 | _ | _ | |a Heterogeneous plasticity of amygdala interneurons in associative learning and extinction |
| 260 | _ | _ | |a [London] |c 2025 |b Springer Nature |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1762939043_29017 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Neural circuits undergo experience-dependent plasticity to form long-lasting memories, but how inhibitory interneurons contribute to this process remains poorly understood. Using miniature microscope calcium imaging, we monitored the activity of large amygdala interneuron populations in freely moving mice during fear learning and extinction. Here we show that interneurons exhibit complex and heterogeneous plasticity at both single-cell and ensemble levels across memory acquisition, expression, and extinction. Analysis of molecular interneuron subpopulations revealed that disinhibitory vasoactive intestinal peptide (VIP)-expressing cells are predominantly activated by salient external stimuli, whereas the activity of projection neuron targeting somatostatin (SST) interneurons additionally aligns with internal behavioural states. Although responses within each interneuron subtype are non-uniform, molecular identity biases their functional role, producing weighted circuit outputs that can flexibly regulate excitatory projection neuron activity and plasticity. These findings demonstrate that inhibitory interneurons actively shape the encoding and stability of emotional memories, underscoring their importance in adaptive learning. |
| 536 | _ | _ | |a 351 - Brain Function (POF4-351) |0 G:(DE-HGF)POF4-351 |c POF4-351 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: pub.dzne.de |
| 700 | 1 | _ | |a Capece Marsico, Jessica |0 P:(DE-2719)9001352 |b 1 |e First author |
| 700 | 1 | _ | |a Pacheco, Catarina M. |0 P:(DE-2719)9001811 |b 2 |
| 700 | 1 | _ | |a Kenet, Selin |0 P:(DE-2719)9003527 |b 3 |u dzne |
| 700 | 1 | _ | |a Escribano, Benjamin |0 P:(DE-2719)9002151 |b 4 |
| 700 | 1 | _ | |a Bitterman, Yael |b 5 |
| 700 | 1 | _ | |a Gründemann, Jan |0 P:(DE-2719)9001219 |b 6 |
| 700 | 1 | _ | |a Lüthi, Andreas |0 0000-0002-1859-4252 |b 7 |
| 700 | 1 | _ | |a Krabbe, Sabine |0 P:(DE-2719)9001056 |b 8 |e Last author |
| 773 | _ | _ | |a 10.1038/s41467-025-66122-y |g Vol. 16, no. 1, p. 9926 |0 PERI:(DE-600)2553671-0 |n 1 |p 9926 |t Nature Communications |v 16 |y 2025 |x 2041-1723 |
| 787 | 0 | _ | |a Favila, Natalia et.al. |d Cold Spring Harbor : Cold Spring Harbor Laboratory, NY, 2024 |i IsParent |0 DZNE-2024-01196 |r |t Heterogeneous plasticity of amygdala interneurons in associative learning and extinction |
| 856 | 4 | _ | |u https://pub.dzne.de/record/281911/files/DZNE-2025-01253.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://pub.dzne.de/record/281911/files/DZNE-2025-01253.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:pub.dzne.de:281911 |p openaire |p VDB |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 0 |6 P:(DE-2719)9001992 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 1 |6 P:(DE-2719)9001352 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 2 |6 P:(DE-2719)9001811 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 3 |6 P:(DE-2719)9003527 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 4 |6 P:(DE-2719)9002151 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 6 |6 P:(DE-2719)9001219 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 8 |6 P:(DE-2719)9001056 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-351 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Brain Function |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-01-30T07:48:07Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-01-30T07:48:07Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2024-01-30T07:48:07Z |
| 915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2024-01-30T07:48:07Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2025-01-02 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-02 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
| 915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2025-01-02 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2025-01-02 |
| 920 | 1 | _ | |0 I:(DE-2719)5000059 |k AG Krabbe |l Functional Diversity of Neural Circuits |x 0 |
| 920 | 1 | _ | |0 I:(DE-2719)5000069 |k AG Gründemann |l Neural Circuit Computations |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-2719)5000059 |
| 980 | _ | _ | |a I:(DE-2719)5000069 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|