001     282301
005     20251117100334.0
024 7 _ |a 10.1016/j.ebiom.2025.105962
|2 doi
024 7 _ |a pmid:41075354
|2 pmid
024 7 _ |a pmc:PMC12547709
|2 pmc
037 _ _ |a DZNE-2025-01271
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Weinreich, Marcel
|b 0
245 _ _ |a Optimised machine learning for time-to-event prediction in healthcare applied to timing of gastrostomy in ALS: a multi-centre, retrospective model development and validation study.
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1763370093_17168
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Amyotrophic lateral sclerosis (ALS) is invariably fatal but there are large variations in the rate of progression. The lack of predictability can make it difficult to plan clinical interventions. This includes the requirement for gastrostomy where early or late placement can adversely impact quality of life and survival.We designed a model to predict the timing of gastrostomy requirement in ALS as indicated by 5% weight loss from diagnosis. We considered >5000 different prediction model configurations including spline models and a set of deep learning (DL) models designed for time-to-event prediction. The optimal prediction model was chosen via a Bayesian framework to avoid overfitting. Model covariates were measurements routinely collected at diagnosis; a separate longitudinal model also incorporated weight at six months. We employed a training dataset of 3000 patients from Europe, and two external validation cohorts spanning distinct populations and clinical contexts (United States, n = 299; and Sweden, n = 215). Missing data was imputed using a random forest model.The optimal model configuration was a logistic hazard DL model. The optimal model achieved a median absolute error (MAE) between predicted and measured time of 3.7 months, with AUROC 0.75 for gastrostomy requirement at 12 months. To increase accuracy we updated predictions for those who had not received gastrostomy at six months after diagnosis: here MAE was 2.6 months (AUROC 0.86). Combining both models achieved MAE of 1.2 months for the modal group of patients. Prediction performance is stable across both validation cohorts. Missing data was imputed without degrading model performance.To enter routine clinical practice a prospective study will be required, but we have demonstrated stable performance across multiple populations and clinical contexts suggesting that our prediction model can be used to guide individualised gastrostomy decision making for patients with ALS.Research Ireland (RI) and Biogen have supported the PRECISION ALS programme.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Amyotrophic lateral sclerosis (ALS)
|2 Other
650 _ 7 |a Gastrostomy
|2 Other
650 _ 7 |a Machine learning
|2 Other
650 _ 7 |a Personalised medicine
|2 Other
650 _ 7 |a Time-to-event prediction
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Gastrostomy: methods
|2 MeSH
650 _ 2 |a Amyotrophic Lateral Sclerosis: diagnosis
|2 MeSH
650 _ 2 |a Amyotrophic Lateral Sclerosis: surgery
|2 MeSH
650 _ 2 |a Amyotrophic Lateral Sclerosis: therapy
|2 MeSH
650 _ 2 |a Machine Learning
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Retrospective Studies
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Europe
|2 MeSH
650 _ 2 |a Bayes Theorem
|2 MeSH
700 1 _ |a McDonough, Harry
|b 1
700 1 _ |a Heverin, Mark
|b 2
700 1 _ |a Domhnaill, Éanna Mac
|b 3
700 1 _ |a Yacovzada, Nancy
|b 4
700 1 _ |a Magen, Iddo
|b 5
700 1 _ |a Cohen, Yahel
|b 6
700 1 _ |a Harvey, Calum
|b 7
700 1 _ |a Elazzab, Ahmed
|b 8
700 1 _ |a Gornall, Sarah
|b 9
700 1 _ |a Boddy, Sarah
|b 10
700 1 _ |a Alix, James J P
|b 11
700 1 _ |a Kurz, Julian M
|b 12
700 1 _ |a Kenna, Kevin P
|b 13
700 1 _ |a Zhang, Sai
|b 14
700 1 _ |a Iacoangeli, Alfredo
|b 15
700 1 _ |a Al-Khleifat, Ahmad
|b 16
700 1 _ |a Snyder, Michael P
|b 17
700 1 _ |a Hobson, Esther
|b 18
700 1 _ |a Chio, Adriano
|b 19
700 1 _ |a Malaspina, Andrea
|b 20
700 1 _ |a Hermann, Andreas
|0 P:(DE-2719)2811732
|b 21
|u dzne
700 1 _ |a Ingre, Caroline
|b 22
700 1 _ |a Costa, Juan Vazquez
|b 23
700 1 _ |a van den Berg, Leonard
|b 24
700 1 _ |a Panadés, Monica Povedano
|b 25
700 1 _ |a van Damme, Philip
|b 26
700 1 _ |a Corcia, Phillipe
|b 27
700 1 _ |a de Carvalho, Mamede
|b 28
700 1 _ |a Al-Chalabi, Ammar
|b 29
700 1 _ |a Hornstein, Eran
|b 30
700 1 _ |a Elhaik, Eran
|b 31
700 1 _ |a Shaw, Pamela J
|b 32
700 1 _ |a Hardiman, Orla
|b 33
700 1 _ |a McDermott, Christopher
|b 34
700 1 _ |a Cooper-Knock, Johnathan
|b 35
773 _ _ |a 10.1016/j.ebiom.2025.105962
|g Vol. 121, p. 105962 -
|0 PERI:(DE-600)2799017-5
|p 105962
|t EBioMedicine
|v 121
|y 2025
|x 2352-3964
856 4 _ |u https://pub.dzne.de/record/282301/files/DZNE-2025-01271.pdf
|y Restricted
856 4 _ |u https://pub.dzne.de/record/282301/files/DZNE-2025-01271.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 21
|6 P:(DE-2719)2811732
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EBIOMEDICINE : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:51:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:51:17Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:51:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EBIOMEDICINE : 2022
|d 2025-01-07
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-07
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-07
920 1 _ |0 I:(DE-2719)1511100
|k AG Hermann
|l Translational Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)1511100
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21