000282540 001__ 282540
000282540 005__ 20251201103218.0
000282540 0247_ $$2doi$$a10.1002/mrm.70127
000282540 0247_ $$2ISSN$$a1522-2594
000282540 0247_ $$2ISSN$$a0740-3194
000282540 037__ $$aDZNE-2025-01303
000282540 041__ $$aEnglish
000282540 082__ $$a610
000282540 1001_ $$00009-0000-9401-1269$$aObriot, Joseph$$b0
000282540 245__ $$aOn the Impact of Artifacts Induced by Mismatches Between Auto‐Calibration Signal and Accelerated 3D GRE Data at 11.7T
000282540 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2025
000282540 3367_ $$2DRIVER$$aarticle
000282540 3367_ $$2DataCite$$aOutput Types/Journal article
000282540 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1764580770_18437
000282540 3367_ $$2BibTeX$$aARTICLE
000282540 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000282540 3367_ $$00$$2EndNote$$aJournal Article
000282540 520__ $$aPurposeThe study aims at investigating  field inhomogeneity artifacts arising from remote locations in the FOV and encountered in accelerated 3D gradient-recalled echo (GRE) sequences at ultra-high field, and at providing mitigation strategies.MethodsMeasurements were conducted at 11.7T using a head-shaped phantom and an accelerated 3D GRE sequence with either integrated or external auto-calibration signal (ACS) lines. Simulations were performed to reproduce the artifacts. The effects of varying GRAPPA reconstruction parameters (kernel size and regularization) were also examined.Results field inhomogeneities located outside the  shimmed region of interest (i.e., the brain) were observed to return ripple-like artifacts within this region, particularly at long echo times. The simulation results support these findings, and the idea that the observed artifact originates from a mismatch between ACS and accelerated data due to intra-voxel dephasing at different resolutions (ACS lines having an intrinsically lower resolution). The short echo time enabled by external (i.e., preacquired) ACS lines reduced artifacts compared to integrated ones. Varying GRAPPA kernel sizes and increasing the number of ACS lines can improve image quality, yet without full compensation.ConclusionThis study highlights ripple-like artifacts amplified with field strength and arising from a lack of coherence between the ACS and imaging (3D GRE) signal caused by  intra-voxel dephasing. To minimize these artifacts, care should be taken in order to preserve the relevant information in the ACS data to properly compute the GRAPPA kernels.
000282540 536__ $$0G:(DE-HGF)POF4-354$$a354 - Disease Prevention and Healthy Aging (POF4-354)$$cPOF4-354$$fPOF IV$$x0
000282540 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000282540 7001_ $$0P:(DE-2719)9002043$$aMauconduit, Franck$$b1
000282540 7001_ $$00000-0002-4997-2738$$aGras, Vincent$$b2
000282540 7001_ $$aGiliyar Radhakrishna, Chaithya$$b3
000282540 7001_ $$aBertrait, Maxime$$b4
000282540 7001_ $$0P:(DE-2719)2812222$$aEhses, Philipp$$b5
000282540 7001_ $$0P:(DE-2719)2810697$$aStirnberg, Rüdiger$$b6
000282540 7001_ $$00000-0002-4767-8738$$aLe Ster, Caroline$$b7
000282540 7001_ $$00000-0003-2144-2484$$aBoulant, Nicolas$$b8
000282540 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.70127$$gp. mrm.70127$$pmrm.70127$$tMagnetic resonance in medicine$$vAOP$$x1522-2594$$y2025
000282540 8564_ $$uhttps://pub.dzne.de/record/282540/files/DZNE-2025-01303%20SUP.pdf
000282540 8564_ $$uhttps://pub.dzne.de/record/282540/files/DZNE-2025-01303%20SUP.pdf?subformat=pdfa$$xpdfa
000282540 8564_ $$uhttps://pub.dzne.de/record/282540/files/DZNE-2025-01303.pdf$$yRestricted
000282540 8564_ $$uhttps://pub.dzne.de/record/282540/files/DZNE-2025-01303.pdf?subformat=pdfa$$xpdfa$$yRestricted
000282540 909CO $$ooai:pub.dzne.de:282540$$pVDB
000282540 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812222$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000282540 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810697$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000282540 9131_ $$0G:(DE-HGF)POF4-354$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Prevention and Healthy Aging$$x0
000282540 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
000282540 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-02$$wger
000282540 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000282540 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000282540 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000282540 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000282540 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000282540 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000282540 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
000282540 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-02
000282540 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000282540 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000282540 9201_ $$0I:(DE-2719)1013026$$kAG Stöcker$$lMR Physics$$x0
000282540 9201_ $$0I:(DE-2719)1040310$$kAG Reuter$$lArtificial Intelligence in Medicine$$x1
000282540 980__ $$ajournal
000282540 980__ $$aVDB
000282540 980__ $$aI:(DE-2719)1013026
000282540 980__ $$aI:(DE-2719)1040310
000282540 980__ $$aUNRESTRICTED