001     282540
005     20251201103218.0
024 7 _ |a 10.1002/mrm.70127
|2 doi
024 7 _ |a 1522-2594
|2 ISSN
024 7 _ |a 0740-3194
|2 ISSN
037 _ _ |a DZNE-2025-01303
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Obriot, Joseph
|0 0009-0000-9401-1269
|b 0
245 _ _ |a On the Impact of Artifacts Induced by Mismatches Between Auto‐Calibration Signal and Accelerated 3D GRE Data at 11.7T
260 _ _ |a New York, NY [u.a.]
|c 2025
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1764580770_18437
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a PurposeThe study aims at investigating field inhomogeneity artifacts arising from remote locations in the FOV and encountered in accelerated 3D gradient-recalled echo (GRE) sequences at ultra-high field, and at providing mitigation strategies.MethodsMeasurements were conducted at 11.7T using a head-shaped phantom and an accelerated 3D GRE sequence with either integrated or external auto-calibration signal (ACS) lines. Simulations were performed to reproduce the artifacts. The effects of varying GRAPPA reconstruction parameters (kernel size and regularization) were also examined.Results field inhomogeneities located outside the shimmed region of interest (i.e., the brain) were observed to return ripple-like artifacts within this region, particularly at long echo times. The simulation results support these findings, and the idea that the observed artifact originates from a mismatch between ACS and accelerated data due to intra-voxel dephasing at different resolutions (ACS lines having an intrinsically lower resolution). The short echo time enabled by external (i.e., preacquired) ACS lines reduced artifacts compared to integrated ones. Varying GRAPPA kernel sizes and increasing the number of ACS lines can improve image quality, yet without full compensation.ConclusionThis study highlights ripple-like artifacts amplified with field strength and arising from a lack of coherence between the ACS and imaging (3D GRE) signal caused by intra-voxel dephasing. To minimize these artifacts, care should be taken in order to preserve the relevant information in the ACS data to properly compute the GRAPPA kernels.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: pub.dzne.de
700 1 _ |a Mauconduit, Franck
|0 P:(DE-2719)9002043
|b 1
700 1 _ |a Gras, Vincent
|0 0000-0002-4997-2738
|b 2
700 1 _ |a Giliyar Radhakrishna, Chaithya
|b 3
700 1 _ |a Bertrait, Maxime
|b 4
700 1 _ |a Ehses, Philipp
|0 P:(DE-2719)2812222
|b 5
700 1 _ |a Stirnberg, Rüdiger
|0 P:(DE-2719)2810697
|b 6
700 1 _ |a Le Ster, Caroline
|0 0000-0002-4767-8738
|b 7
700 1 _ |a Boulant, Nicolas
|0 0000-0003-2144-2484
|b 8
773 _ _ |a 10.1002/mrm.70127
|g p. mrm.70127
|0 PERI:(DE-600)1493786-4
|p mrm.70127
|t Magnetic resonance in medicine
|v AOP
|y 2025
|x 1522-2594
856 4 _ |u https://pub.dzne.de/record/282540/files/DZNE-2025-01303%20SUP.pdf
856 4 _ |u https://pub.dzne.de/record/282540/files/DZNE-2025-01303%20SUP.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://pub.dzne.de/record/282540/files/DZNE-2025-01303.pdf
|y Restricted
856 4 _ |u https://pub.dzne.de/record/282540/files/DZNE-2025-01303.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:pub.dzne.de:282540
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2812222
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2810697
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
920 1 _ |0 I:(DE-2719)1013026
|k AG Stöcker
|l MR Physics
|x 0
920 1 _ |0 I:(DE-2719)1040310
|k AG Reuter
|l Artificial Intelligence in Medicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1013026
980 _ _ |a I:(DE-2719)1040310
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21