001     282567
005     20251202145639.0
024 7 _ |a 10.1038/s41467-025-66900-8
|2 doi
024 7 _ |a pmid:41326385
|2 pmid
037 _ _ |a DZNE-2025-01330
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Mondal, Mrityunjoy
|0 P:(DE-2719)9001754
|b 0
|e First author
|u dzne
245 _ _ |a Dietary lipid content modifies wah-1/AIFM1-associated phenotypes via LRK-1 and DRP-1 expression in C. elegans.
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1764683511_28230
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Eukaryotic cells rely on mitochondria to fine-tune their metabolism in response to environmental and nutritional changes. However, how mitochondria adapt to nutrient availability and how diets impact mitochondrial disease progression, remain unclear. Here, we show that lipid-derived diets influence the survival of Caenorhabditis elegans carrying a hypomorphic wah-1/AIFM1 mutation that compromises mitochondrial Complex I assembly. Comparative proteomic and lipidomic analyses reveal that the overall metabolic profile of wah-1/AIFM1 mutants varies with bacterial diet. Specifically, high-lipid diets extend lifespan by promoting mitochondrial network maintenance and lipid accumulation, whereas low-lipid diets shorten animal survival via overactivation of LRK-1 and DRP-1. We demonstrate that LRK-1 inhibition downregulates DRP-1 expression, reduces mitochondrial network fragmentation, and attenuates excessive autophagy, thereby rescuing the survival defects of wah-1 mutants maintained on low-lipid diets. Together, these findings suggest that nutrition, and particularly lipid intake, may ameliorate certain disease phenotypes associated with an inherited mutation that disrupts mitochondrial bioenergetics.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Caenorhabditis elegans Proteins
|2 NLM Chemicals
650 _ 7 |a Dietary Fats
|2 NLM Chemicals
650 _ 7 |a Dynamins
|0 EC 3.6.5.5
|2 NLM Chemicals
650 _ 7 |a dynamin-related protein 1, C elegans
|0 EC 3.6.5.5
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Caenorhabditis elegans: metabolism
|2 MeSH
650 _ 2 |a Caenorhabditis elegans: genetics
|2 MeSH
650 _ 2 |a Caenorhabditis elegans Proteins: metabolism
|2 MeSH
650 _ 2 |a Caenorhabditis elegans Proteins: genetics
|2 MeSH
650 _ 2 |a Phenotype
|2 MeSH
650 _ 2 |a Dietary Fats: metabolism
|2 MeSH
650 _ 2 |a Dietary Fats: pharmacology
|2 MeSH
650 _ 2 |a Mitochondria: metabolism
|2 MeSH
650 _ 2 |a Dynamins: metabolism
|2 MeSH
650 _ 2 |a Dynamins: genetics
|2 MeSH
650 _ 2 |a Mutation
|2 MeSH
650 _ 2 |a Longevity
|2 MeSH
650 _ 2 |a Autophagy
|2 MeSH
700 1 _ |a Scifo, Enzo
|0 P:(DE-2719)2812562
|b 1
700 1 _ |a Ciliberti, Rossella Erminia
|0 P:(DE-2719)9002528
|b 2
|u dzne
700 1 _ |a Wischhof, Lena
|0 P:(DE-2719)2811527
|b 3
|u dzne
700 1 _ |a Abbariki, Tannaz Norizadeh
|0 0009-0003-0980-8639
|b 4
700 1 _ |a Jackson, Joshua
|0 P:(DE-2719)2814190
|b 5
700 1 _ |a Menegatou, Ioanna-Maria
|0 P:(DE-2719)9002833
|b 6
|u dzne
700 1 _ |a Zeisler-Diehl, Viktoria
|b 7
700 1 _ |a Riemer, Jan
|b 8
700 1 _ |a Jussila, Benjamin
|0 0000-0001-9764-0482
|b 9
700 1 _ |a Hopkins, Christopher E
|b 10
700 1 _ |a Kierszniowska, Sylwia
|0 0000-0002-4736-9222
|b 11
700 1 _ |a Schreiber, Lukas
|0 0000-0001-7003-9929
|b 12
700 1 _ |a Nicotera, Pierluigi
|0 P:(DE-2719)2010732
|b 13
|u dzne
700 1 _ |a Ehninger, Dan
|0 P:(DE-2719)2289209
|b 14
700 1 _ |a Bano, Daniele
|0 P:(DE-2719)2158358
|b 15
|e Last author
773 _ _ |a 10.1038/s41467-025-66900-8
|g Vol. 16, no. 1, p. 10817
|0 PERI:(DE-600)2553671-0
|n 1
|p 10817
|t Nature Communications
|v 16
|y 2025
|x 2041-1723
856 4 _ |u https://pub.dzne.de/record/282567/files/DZNE-2025-01330.pdf
|y Restricted
856 4 _ |u https://pub.dzne.de/record/282567/files/DZNE-2025-01330.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001754
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2812562
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9002528
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2811527
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 0009-0003-0980-8639
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2814190
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9002833
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)2010732
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)2289209
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)2158358
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 1
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
920 1 _ |0 I:(DE-2719)1013003
|k AG Bano
|l Aging and Neurodegeneration
|x 0
920 1 _ |0 I:(DE-2719)1013005
|k AG Ehninger
|l Translational Biogerontology
|x 1
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a VDBINPRINT
980 _ _ |a I:(DE-2719)1013003
980 _ _ |a I:(DE-2719)1013005
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21