000282573 001__ 282573
000282573 005__ 20251218103443.0
000282573 0247_ $$2doi$$a10.1002/glia.70107
000282573 0247_ $$2pmid$$apmid:41331743
000282573 0247_ $$2pmc$$apmc:PMC12672973
000282573 0247_ $$2ISSN$$a0894-1491
000282573 0247_ $$2ISSN$$a1098-1136
000282573 037__ $$aDZNE-2025-01333
000282573 041__ $$aEnglish
000282573 082__ $$a610
000282573 1001_ $$00009-0004-0755-4476$$aTascio, Dario$$b0
000282573 245__ $$aAMPA Receptors in NG2 Glia Differently Affect Signal Transduction in the Hippocampus and Cerebellum.
000282573 260__ $$aBognor Regis [u.a.]$$bWiley-Liss$$c2026
000282573 3367_ $$2DRIVER$$aarticle
000282573 3367_ $$2DataCite$$aOutput Types/Journal article
000282573 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1764927641_11990
000282573 3367_ $$2BibTeX$$aARTICLE
000282573 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000282573 3367_ $$00$$2EndNote$$aJournal Article
000282573 520__ $$aGray matter NG2 glia constitute a heterogeneous population of cells whose functions remain incompletely understood. In the hippocampus, Schaffer collaterals activate AMPA receptors (AMPARs) in NG2 glia, giving rise to small excitatory post-synaptic currents (EPSCs). Climbing fibers of the cerebellum also form synapses with NG2 glia, although producing much larger EPSCs. We aimed to identify mechanisms generating these regional differences in the efficacy of neuron-glia synapses. Combined patch-clamp and RT-PCR analyses allowed for determining structural and functional differences of AMPARs expressed by the glial cells. Comparing pharmacological and molecular data in both regions revealed stronger expression of Ca2+ permeable AMPARs in cerebellar NG2 glia. Different expression patterns were found both for AMPAR subunits and their auxiliary proteins. Moreover, experiments using the low-affinity AMPAR antagonist γ-DGG pointed towards higher synaptic glutamate concentrations at cerebellar synapses, likely due to multivesicular release, which contributed to enhanced synaptic efficacy. Finally, we examined short-term plasticity and showed that pre- and postsynaptic mechanisms contributed to paired-pulse depression at climbing fiber-NG2 glia synapses. Together, our data provide new insights into the molecular and functional specialization of NG2 glia and improve our understanding of the mechanisms underlying neuron-glia synaptic signaling, by highlighting how region-specific differences in AMPAR composition and presynaptic release properties shape this communication in the central nervous system.
000282573 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000282573 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000282573 650_7 $$2Other$$aAMPA receptor
000282573 650_7 $$2Other$$aNG2 glia
000282573 650_7 $$2Other$$acerebellum
000282573 650_7 $$2Other$$ahippocampus
000282573 650_7 $$2Other$$apatch clamp
000282573 650_7 $$2Other$$asubunit composition
000282573 650_7 $$2NLM Chemicals$$aReceptors, AMPA
000282573 650_7 $$2NLM Chemicals$$achondroitin sulfate proteoglycan 4
000282573 650_7 $$2NLM Chemicals$$aAntigens
000282573 650_7 $$2NLM Chemicals$$aProteoglycans
000282573 650_2 $$2MeSH$$aAnimals
000282573 650_2 $$2MeSH$$aCerebellum: cytology
000282573 650_2 $$2MeSH$$aCerebellum: metabolism
000282573 650_2 $$2MeSH$$aCerebellum: physiology
000282573 650_2 $$2MeSH$$aReceptors, AMPA: metabolism
000282573 650_2 $$2MeSH$$aReceptors, AMPA: genetics
000282573 650_2 $$2MeSH$$aNeuroglia: metabolism
000282573 650_2 $$2MeSH$$aNeuroglia: physiology
000282573 650_2 $$2MeSH$$aNeuroglia: drug effects
000282573 650_2 $$2MeSH$$aHippocampus: cytology
000282573 650_2 $$2MeSH$$aHippocampus: metabolism
000282573 650_2 $$2MeSH$$aHippocampus: physiology
000282573 650_2 $$2MeSH$$aSignal Transduction: physiology
000282573 650_2 $$2MeSH$$aSignal Transduction: drug effects
000282573 650_2 $$2MeSH$$aExcitatory Postsynaptic Potentials: physiology
000282573 650_2 $$2MeSH$$aExcitatory Postsynaptic Potentials: drug effects
000282573 650_2 $$2MeSH$$aSynapses: physiology
000282573 650_2 $$2MeSH$$aMice, Inbred C57BL
000282573 650_2 $$2MeSH$$aMale
000282573 650_2 $$2MeSH$$aRats
000282573 650_2 $$2MeSH$$aPatch-Clamp Techniques
000282573 650_2 $$2MeSH$$aMice
000282573 650_2 $$2MeSH$$aAntigens
000282573 650_2 $$2MeSH$$aProteoglycans
000282573 7001_ $$aGebril, Nehal$$b1
000282573 7001_ $$aJabs, Ronald$$b2
000282573 7001_ $$0P:(DE-2719)2811625$$aHenneberger, Christian$$b3$$udzne
000282573 7001_ $$00000-0003-2579-8357$$aSteinhäuser, Christian$$b4
000282573 7001_ $$00000-0003-1249-9083$$aSeifert, Gerald$$b5
000282573 773__ $$0PERI:(DE-600)1474828-9$$a10.1002/glia.70107$$gVol. 74, no. 2, p. e70107$$n2$$pe70107$$tGlia$$v74$$x0894-1491$$y2026
000282573 8564_ $$uhttps://pub.dzne.de/record/282573/files/DZNE-2025-01333.pdf$$yOpenAccess
000282573 8564_ $$uhttps://pub.dzne.de/record/282573/files/DZNE-2025-01333.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000282573 909CO $$ooai:pub.dzne.de:282573$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000282573 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811625$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000282573 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000282573 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000282573 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06
000282573 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-06
000282573 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-06
000282573 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000282573 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGLIA : 2022$$d2025-01-06
000282573 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-06$$wger
000282573 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-06
000282573 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06
000282573 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000282573 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000282573 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGLIA : 2022$$d2025-01-06
000282573 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000282573 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-06$$wger
000282573 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000282573 9201_ $$0I:(DE-2719)1013029$$kAG Henneberger$$lSynaptic and Glial Plasticity$$x0
000282573 980__ $$ajournal
000282573 980__ $$aVDB
000282573 980__ $$aUNRESTRICTED
000282573 980__ $$aI:(DE-2719)1013029
000282573 9801_ $$aFullTexts