000282908 001__ 282908
000282908 005__ 20251215105706.0
000282908 0247_ $$2doi$$a10.1016/j.nicl.2025.103895
000282908 0247_ $$2pmid$$apmid:41176879
000282908 0247_ $$2pmc$$apmc:PMC12621467
000282908 037__ $$aDZNE-2025-01369
000282908 041__ $$aEnglish
000282908 082__ $$a610
000282908 1001_ $$aAkdeniz, Aslı$$b0
000282908 245__ $$aLesion Network Mapping of Acute Neurological Deficits and Its Prognostic Value After Ischemic Stroke.
000282908 260__ $$a[Amsterdam u.a.]$$bElsevier$$c2025
000282908 3367_ $$2DRIVER$$aarticle
000282908 3367_ $$2DataCite$$aOutput Types/Journal article
000282908 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1765792458_22484
000282908 3367_ $$2BibTeX$$aARTICLE
000282908 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000282908 3367_ $$00$$2EndNote$$aJournal Article
000282908 520__ $$aPredicting functional recovery after ischemic stroke is vital for guiding clinical care. This study investigated whether lesion network mapping (LNM), a technique for modeling symptom-specific brain networks, can improve outcome prediction of functional recovery up to one-year post-stroke.We pooled data from two prospective stroke cohorts (1000Plus and PROSCIS-B; N = 565). Seven NIHSS-derived symptom networks were generated using LNM based on NIHSS sub-scores on admission (i.e., consciousness, language, motor, sensory, vision, neglect and ataxia). Lesion masks derived from MRI (within 7 days) were intersected with each symptom network to calculate individual network damage scores. Functional outcome was defined by the modified Rankin Scale (mRS) at 3 months (1000Plus) or 12 months (PROSCIS-B). Ordinal logistic regression models were performed to evaluate additional predictive value of LNM: Model 1 included age, lesion volume, and presence of selected neurological deficits; Model 2 included age, lesion volume, and NIHSS-derived network damage scores. Models were compared using pseudo-R2 and AIC.Patients had a mean age of 68 years and a median NIHSS of 3 (IQR 1-5). LNM revealed distinct, symptom-specific networks, with corresponding damage scores that were higher in patients exhibiting the respective deficits compared to those without. However, inclusion of these scores did not enhance the predictive accuracy of functional outcomes beyond that achieved with clinical variables alone (Model 1 vs. Model 2: pseudo-R2: 0.0468 vs. 0.0159; AIC:1730.598 vs. 1769.222).LNM-derived scores reflected symptom topography but did not enhance prediction of functional recovery. While promising as a mechanistic tool, the clinical utility of LNM-based damage metrics for prognostication remains limited and requires further validation.
000282908 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000282908 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000282908 650_7 $$2Other$$aConnectome
000282908 650_7 $$2Other$$aFunctional outcome
000282908 650_7 $$2Other$$aIschemic stroke
000282908 650_7 $$2Other$$aLesion-network mapping
000282908 650_7 $$2Other$$aStroke severity
000282908 650_2 $$2MeSH$$aHumans
000282908 650_2 $$2MeSH$$aMale
000282908 650_2 $$2MeSH$$aFemale
000282908 650_2 $$2MeSH$$aIschemic Stroke: diagnostic imaging
000282908 650_2 $$2MeSH$$aIschemic Stroke: physiopathology
000282908 650_2 $$2MeSH$$aIschemic Stroke: complications
000282908 650_2 $$2MeSH$$aIschemic Stroke: pathology
000282908 650_2 $$2MeSH$$aAged
000282908 650_2 $$2MeSH$$aMiddle Aged
000282908 650_2 $$2MeSH$$aPrognosis
000282908 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods
000282908 650_2 $$2MeSH$$aRecovery of Function: physiology
000282908 650_2 $$2MeSH$$aNerve Net: diagnostic imaging
000282908 650_2 $$2MeSH$$aNerve Net: pathology
000282908 650_2 $$2MeSH$$aNerve Net: physiopathology
000282908 650_2 $$2MeSH$$aProspective Studies
000282908 650_2 $$2MeSH$$aAged, 80 and over
000282908 650_2 $$2MeSH$$aBrain: diagnostic imaging
000282908 650_2 $$2MeSH$$aBrain: pathology
000282908 7001_ $$aRíos, Ana Sofía$$b1
000282908 7001_ $$aTemuulen, Uchralt$$b2
000282908 7001_ $$aFiebach, Jochen B$$b3
000282908 7001_ $$aVillringer, Kersten$$b4
000282908 7001_ $$aAli, Huma Fatima$$b5
000282908 7001_ $$aKhalil, Ahmed$$b6
000282908 7001_ $$aGrittner, Ulrike$$b7
000282908 7001_ $$0P:(DE-2719)9000189$$aLiman, Thomas G.$$b8$$udzne
000282908 7001_ $$0P:(DE-2719)2811033$$aEndres, Matthias$$b9$$udzne
000282908 7001_ $$aKufner, Anna$$b10
000282908 773__ $$0PERI:(DE-600)2701571-3$$a10.1016/j.nicl.2025.103895$$gVol. 48, p. 103895 -$$p103895$$tNeuroImage: Clinical$$v48$$x2213-1582$$y2025
000282908 8564_ $$uhttps://pub.dzne.de/record/282908/files/DZNE-2025-01369.pdf$$yRestricted
000282908 8564_ $$uhttps://pub.dzne.de/record/282908/files/DZNE-2025-01369.pdf?subformat=pdfa$$xpdfa$$yRestricted
000282908 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)9000189$$aExternal Institute$$b8$$kExtern
000282908 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811033$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000282908 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000282908 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE-CLIN : 2022$$d2025-01-01
000282908 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
000282908 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
000282908 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:49:23Z
000282908 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:49:23Z
000282908 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:49:23Z
000282908 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
000282908 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
000282908 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-01
000282908 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
000282908 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
000282908 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-01
000282908 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-01
000282908 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-01
000282908 9201_ $$0I:(DE-2719)1811005$$kAG Endres$$lInterdisciplinary Dementia Research$$x0
000282908 980__ $$ajournal
000282908 980__ $$aEDITORS
000282908 980__ $$aVDBINPRINT
000282908 980__ $$aI:(DE-2719)1811005
000282908 980__ $$aUNRESTRICTED