000282912 001__ 282912
000282912 005__ 20251217170445.0
000282912 0247_ $$2doi$$a10.1186/s12964-025-02509-0
000282912 0247_ $$2pmid$$apmid:41327199
000282912 0247_ $$2pmc$$apmc:PMC12690826
000282912 037__ $$aDZNE-2025-01373
000282912 041__ $$aEnglish
000282912 082__ $$a570
000282912 1001_ $$00000-0002-7558-8035$$aAnnamalai, Karthika$$b0
000282912 245__ $$aDeregulation of m6A-RNA methylation impairs adaptive hypertrophic response and drives maladaptation via mTORC1-S6K1-hyperactivation and autophagy impairment.
000282912 260__ $$aLondon$$bBiomed Central$$c2025
000282912 3367_ $$2DRIVER$$aarticle
000282912 3367_ $$2DataCite$$aOutput Types/Journal article
000282912 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1765973747_5351
000282912 3367_ $$2BibTeX$$aARTICLE
000282912 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000282912 3367_ $$00$$2EndNote$$aJournal Article
000282912 520__ $$aPressure overload first leads to compensated hypertrophy and secondary to heart failure. m6A-RNA methylation is a fast process for the adaptation of cell composition. m6A-RNA-methylation is regulated by the demethylase, fat mass and obesity-associated protein (FTO), and FTO protein levels are diminished in heart failure. Cardiomyocyte-specific FTO-transgenic/knockout-mice have shown the relevance of FTO in pressure overload remodeling. However, its functional downstream regulatory mechanisms are still unclear. In this study, we discover the harmful signaling pathways that are triggered by m6A imbalance and FTO loss, which eventually lead to adverse cardiac remodeling and heart failure.FTOcKO animals were generated by crossing FTOfl/fl mice with [Formula: see text]-MHC Cre mice using Cre-lox system. Control and the FTOcKO animals groups were subjected to TAC (transverse aortic constriction) surgery. Echocardiography was performed 1-week post-TAC surgery. MeRIP (m6A RNA immunoprecipitation) sequencing was performed from the heart tissues of mice after one week TAC surgery. Additionally, the mechanistical interrelation between the signaling pathways during FTO loss and adverse cardiac remodeling were investigated in human iPS-CMs (hiPS-CMs).One week post-TAC surgery, FTOcKO mice showed impaired cardiac function (EF: CreC TAC (45%) vs. FTOcKO TAC (25%), p < 0.0001) and increased LVID (CreC TAC(3.9 mm) vs. FTOcKO TAC (4.8 mm), p < 0.0001), indicating a lack of adaption to pressure overload. Knockdown of FTO in hiPS-cardiomyocytes also reduced endothelin-induced hypertrophic response. MeRIP-seq data of FTOcKO mice showed that the differentially hypermethylated transcripts were associated with cardiac apoptosis inhibition (CDK1, CFLAR), mTORC1 signaling pathway (AKT1S1) and autophagy regulation (TFEB). mTORC1 was identified as a central player of dysregulation with hyperactivation of its canonical substrates phospho-S6K1 (Thr 389) and phospho-S6 (ser235/236) ex-vivo (FTOcKO) and in-vitro (FTO-KD-hiPS-CMs). Moreover, FTO-deficient cardiomyocytes cause autophagic flux impairment and defective autophagy. The effect of atrophy and induced apoptosis upon FTO-m6A imbalance could be rescued by pharmacological inhibiton of the mTORC1-S6K1 pathway.Downregulation of FTO leads to mTORC1-S6K1 hyperactivation that shift the compensative hypertrophic response to atrophy and apoptosis leading to progressive heart failure. These findings might pave the way for the development of novel therapeutic targets for the early phases of heart failure treatments.The online version contains supplementary material available at 10.1186/s12964-025-02509-0.
000282912 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000282912 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000282912 650_7 $$2Other$$aApoptosis
000282912 650_7 $$2Other$$aAtrophy
000282912 650_7 $$2Other$$aCardiac hypertrophy
000282912 650_7 $$2Other$$aMouse
000282912 650_7 $$2Other$$aN6-methyladenosine
000282912 650_7 $$2Other$$aPathological remodeling
000282912 7001_ $$00009-0007-5118-6908$$aDilliker, Soniya$$b1
000282912 7001_ $$aBuchholz, Eric$$b2
000282912 7001_ $$0P:(DE-2719)9000512$$aCastro-Hernández, Ricardo$$b3$$udzne
000282912 7001_ $$00009-0009-5224-131X$$aPanyam, Nikita$$b4
000282912 7001_ $$aPommeranz, Alessa$$b5
000282912 7001_ $$aWiederhake, Pascal$$b6
000282912 7001_ $$aWery von Limont, Nelly$$b7
000282912 7001_ $$0P:(DE-2719)9003058$$aHempel, Nina$$b8$$udzne
000282912 7001_ $$aEbner, Verena$$b9
000282912 7001_ $$aSwarnkar, Surabhi$$b10
000282912 7001_ $$aMohamed, Belal A$$b11
000282912 7001_ $$00000-0001-5137-7228$$aStreckfuss-Bömeke, Katrin$$b12
000282912 7001_ $$00000-0002-6892-9751$$aSteffens, Sabine$$b13
000282912 7001_ $$aHerzig, Stephan$$b14
000282912 7001_ $$00000-0002-3642-242X$$aEbert, Antje$$b15
000282912 7001_ $$0P:(DE-2719)2000047$$aFischer, Andre$$b16
000282912 7001_ $$aToischer, Karl$$b17
000282912 773__ $$0PERI:(DE-600)2126315-2$$a10.1186/s12964-025-02509-0$$gVol. 23, no. 1, p. 522$$n1$$p522$$tCell communication and signaling$$v23$$x1478-811X$$y2025
000282912 8564_ $$uhttps://pub.dzne.de/record/282912/files/DZNE-2025-01373.pdf$$yOpenAccess
000282912 8564_ $$uhttps://pub.dzne.de/record/282912/files/DZNE-2025-01373.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000282912 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000512$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000282912 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9003058$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000282912 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000047$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b16$$kDZNE
000282912 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000282912 9141_ $$y2025
000282912 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000282912 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
000282912 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-13
000282912 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-13
000282912 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
000282912 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL COMMUN SIGNAL : 2022$$d2024-12-13
000282912 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:36:07Z
000282912 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:36:07Z
000282912 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
000282912 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-13
000282912 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000282912 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000282912 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
000282912 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-13
000282912 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL COMMUN SIGNAL : 2022$$d2024-12-13
000282912 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000282912 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000282912 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000282912 9201_ $$0I:(DE-2719)1410002$$kAG Fischer$$lEpigenetics and Systems Medicine in Neurodegenerative Diseases$$x0
000282912 980__ $$ajournal
000282912 980__ $$aVDB
000282912 980__ $$aUNRESTRICTED
000282912 980__ $$aI:(DE-2719)1410002
000282912 9801_ $$aFullTexts